scispace - formally typeset
Search or ask a question
Author

Udo Seifert

Bio: Udo Seifert is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Entropy production & Fluctuation theorem. The author has an hindex of 74, co-authored 308 publications receiving 22363 citations. Previous affiliations of Udo Seifert include Forschungszentrum Jülich & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: For a colloidal particle driven by a constant force across a periodic potential, the authors investigated the distribution of entropy production both experimentally and theoretically, showing that the fluctuation theorem holds experimentally.
Abstract: For a colloidal particle driven by a constant force across a periodic potential, we investigate the distribution of entropy production both experimentally and theoretically. For short trajectories, the fluctuation theorem holds experimentally. The mean entropy production rate shows two regimes as a function of the applied force. Theoretically, both mean and variance of the pronounced non-Gaussian distribution can be obtained from a differential equation in good agreement with the experimental data.

55 citations

Journal ArticleDOI
TL;DR: For configurational changes of soft matter systems affected or caused by external hydrodynamic flow, applied work, exchanged heat, and entropy change on the level of a single trajectory guarantee invariance of stochastic thermodynamics under a change of frame of reference.
Abstract: For configurational changes of soft matter systems affected or caused by external hydrodynamic flow, we identify applied work, exchanged heat, and entropy change on the level of a single trajectory. These expressions guarantee invariance of stochastic thermodynamics under a change of frame of reference. As criterion for equilibrium versus nonequilibrium, zero versus nonzero applied work replaces detailed balance versus nonvanishing currents, since both latter criteria are shown to depend on the frame of reference. Our results are illustrated quantitatively by calculating the large deviation function for the entropy production of a dumbbell in shear flow.

55 citations

Journal ArticleDOI
TL;DR: It is argued that the analysis of the long-time decay of membrane height correlations can thus provide a new means to determine the effective diffusion coefficient of proteins in the membrane.
Abstract: Using analytical calculations and computer simulations, we consider both the lateral diffusion of a membrane protein and the fluctuation spectrum of the membrane in which the protein is embedded. The membrane protein interacts with the membrane shape through its spontaneous curvature and bending rigidity. The lateral motion of the protein may be viewed as diffusion in an effective potential, hence, the effective mobility is always reduced compared to the case of free diffusion. Using a rigorous path-integral approach, we derive an analytical expression for the effective diffusion coefficient for small ratios of temperature and bending rigidity, which is the biologically relevant limit. Simulations show very good quantitative agreement with our analytical result. The analysis of the correlation functions contributing to the diffusion coefficient shows that the correlations between the stochastic force of the protein and the response in the membrane shape are responsible for the reduction. Our quantitative analysis of the membrane height correlation spectrum shows an influence of the protein-membrane interaction causing a distinctly altered wave-vector dependence compared to a free membrane. Furthermore, the time correlations exhibit the two relevant time scales of the system: that of membrane fluctuations and that of lateral protein diffusion with the latter typically much longer than the former. We argue that the analysis of the long-time decay of membrane height correlations can thus provide a new means to determine the effective diffusion coefficient of proteins in the membrane.

55 citations

Journal ArticleDOI
TL;DR: The dispersion relation for the overdamped bending modes of a membrane bound to a substrate by an attractive potential is determined and the damping rate γ as a function of the wave vector q behaves, for small q, like γ∼q2 arising from the interplay between the hydrodynamic damping by the surrounding liquid and the restoring force in the binding potential.
Abstract: The dispersion relation for the overdamped bending modes of a membrane bound to a substrate by an attractive potential is determined. The damping rate γ as a function of the wave vector q behaves, for small q, like γ∼q2 arising from the interplay between the hydrodynamic damping by the surrounding liquid and the restoring force in the binding potential. With increasing wave vector q, various crossovers can occur, leading to the possibility of nonmonotonic damping where γ decreases with q as ∼1/q.

54 citations

Journal ArticleDOI
TL;DR: For thermoelectric power generation in a multiterminal geometry, strong numerical evidence for a universal bound as a function of the magnetic-field induced asymmetry of the nondiagonal Onsager coefficients is presented.
Abstract: For thermoelectric power generation in a multiterminal geometry, strong numerical evidence for a universal bound as a function of the magnetic-field induced asymmetry of the nondiagonal Onsager coefficients is presented. This bound implies, inter alia, that the power vanishes at least linearly when the maximal efficiency is approached. In particular, this result rules out that Carnot efficiency can be reached at finite power, which an analysis based on the second law only would, in principle, allow.

54 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations