scispace - formally typeset
Search or ask a question
Author

Udo Seifert

Bio: Udo Seifert is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Entropy production & Fluctuation theorem. The author has an hindex of 74, co-authored 308 publications receiving 22363 citations. Previous affiliations of Udo Seifert include Forschungszentrum Jülich & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: Based on the concept of a nonequilibrium steady state, a method to experimentally determine energy landscapes acting on colloidal systems by measuring the stationary probability distribution and the current in the system is presented.
Abstract: Based on the concept of a nonequilibrium steady state, we present a method to experimentally determine energy landscapes acting on colloidal systems. By measuring the stationary probability distribution and the current in the system, we explore potential landscapes with barriers up to several hundred ${k}_{\mathrm{B}}T$. As an illustration, we use this approach to measure the effective diffusion coefficient of a colloidal particle moving in a tilted potential.

38 citations

Journal ArticleDOI
TL;DR: In this article, a numerical method to estimate the Shannon entropy rate of continuous time hidden-Markov processes from a single time series is developed, and an analytical upper bound on the rate of mutual information is calculated for a class of Markov processes for which the transition rates have a bipartite character.
Abstract: The problem of calculating the rate of mutual information between two coarse-grained variables that together specify a continuous time Markov process is addressed. As a main obstacle, the coarse-grained variables are in general non-Markovian, therefore, an expression for their Shannon entropy rates in terms of the stationary probability distribution is not known. A numerical method to estimate the Shannon entropy rate of continuous time hidden-Markov processes from a single time series is developed. With this method the rate of mutual information can be determined numerically. Moreover, an analytical upper bound on the rate of mutual information is calculated for a class of Markov processes for which the transition rates have a bipartite character. Our general results are illustrated with explicit calculations for four-state networks.

38 citations

Journal ArticleDOI
TL;DR: In this article, the mean first passage time (MFPT) was proposed as the solution to a partial differential equation, which was solved numerically for a model case. But the MFPT was not applied to the case of a particle escape from a metastable well.
Abstract: Thermally activated escape of an over-damped particle from a metastable well under the action of a time-ramped force is studied. We express the mean first passage time (MFPT) as the solution to a partial differential equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can provide a valuable first estimate.

36 citations

Journal ArticleDOI
TL;DR: This paper integrates the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions and derives expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.
Abstract: We investigate the dynamics of microcapsules in linear shear flow within a reduced model with two degrees of freedom. In previous work for steady shear flow, the dynamic phases of this model, i.e. swinging, tumbling and intermittent behaviour, have been identified using numerical methods. In this paper, we integrate the equations of motion in the quasi-spherical limit analytically for time-constant and time-dependent shear flow using matched asymptotic expansions. Using this method, we find analytical expressions for the mean tumbling rate in general time-dependent shear flow. The capsule dynamics is studied in more detail when the inverse shear rate is harmonically modulated around a constant mean value for which a dynamic phase diagram is constructed. By a judicious choice of both modulation frequency and phase, tumbling motion can be induced even if the mean shear rate corresponds to the swinging regime. We derive expressions for the amplitude and width of the resonance peaks as a function of the modulation frequency.

35 citations

Journal ArticleDOI
TL;DR: It is shown that in the biologically relevant limit specific adhesion is well described by a lattice gas model, where lattice sites correspond to bond sites, and an explicit expression for the effective bond interactions induced by the thermal undulations of the membrane is derived.
Abstract: We theoretically consider specific adhesion of a fluctuating membrane to a hard substrate via the formation of bonds between receptors attached to the substrate and ligands in the membrane. By integrating out the degrees of freedom of the membrane shape, we show that in the biologically relevant limit specific adhesion is well described by a lattice gas model, where lattice sites correspond to bond sites. We derive an explicit expression for the effective bond interactions induced by the thermal undulations of the membrane. Furthermore, we compare kinetic Monte Carlo simulations for our lattice gas model with full dynamic simulations that take into account both the shape fluctuations of the membrane and reactions between receptors and ligands at bond sites. We demonstrate that an appropriate mapping of the height dependent binding and unbinding rates in the full scheme to rates in the lattice gas model leads to good agreement.

35 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations