scispace - formally typeset
Search or ask a question
Author

Udo Seifert

Bio: Udo Seifert is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Entropy production & Fluctuation theorem. The author has an hindex of 74, co-authored 308 publications receiving 22363 citations. Previous affiliations of Udo Seifert include Forschungszentrum Jülich & Technische Universität München.


Papers
More filters
Journal ArticleDOI
01 Aug 2012-EPL
TL;DR: In this paper, the stability of micro-domains of ligand-receptor bonds that mediate the adhesion of biological model membranes was analyzed by theoretical means, and the commonly suggested dense packing to be separated by a free energy barrier from a regime in which bonds are sparsely distributed.
Abstract: We analyze the stability of micro-domains of ligand-receptor bonds that mediate the adhesion of biological model membranes. After evaluating the effects of membrane fluctuations on the binding affinity of a single bond, we characterize the organization of bonds within the domains by theoretical means. In a large range of parameters, we find the commonly suggested dense packing to be separated by a free energy barrier from a regime in which bonds are sparsely distributed. If bonds are mobile, a coexistence of the two regimes should emerge, which agrees with recent experimental observations.

27 citations

Journal ArticleDOI
TL;DR: In this article, the authors determine the relaxational dynamics of the shape fluctuations of a fluid membrane in the vicinity of a substrate, including coupling between the local shape and the difference of the two monolayer densities as well as a lateral tension in the membrane.
Abstract: We determine the relaxational dynamics of the shape fluctuations of a fluid membrane in the vicinity of a substrate. Extending the "classical" description, we include the coupling between the local shape and the difference of the two monolayer densities as well as a lateral tension in the membrane. These extensions introduce additional length scales to the problem. The asymptotic behavior of the dispersion relation and the correlation functions can be understood from limiting cases in which either a free bilayer or a bound incompressible membrane is considered. In many cases, however, the relevant length scales do not separate very well, so that the full dispersion relation will be needed for the interpretation of experiments. It is shown that in addition to the damping due to bulk viscosity the dissipation due to friction between the monolayers is observable and indeed dominates the long-time behavior of the dynamical height correlation function for large wave vectors. As demonstrated with typical sets of parameters, the transition to this regime will be accessible by optical techniques only for weak adhesion and strong friction between the monolayers.

27 citations

Journal ArticleDOI
19 Feb 2008-Langmuir
TL;DR: In this article, the lateral diffusion of a protein interacting with the curvature of the membrane is considered and it is shown that curvature coupling substantially enhances the diffusion coefficient, and the correlation of the forces acting on the particle indicates that the diffusion inclusion tries to follow favorable positions on the membrane such that forces along the trajectory are on average smaller than they would be for random particle positions.
Abstract: We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study, we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than that from our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane such that forces along the trajectory are on average smaller than they would be for random particle positions.

27 citations

Journal ArticleDOI
TL;DR: In this article, the correlation between neighboring ligand-receptor bonds in a regime of relatively strong membrane fluctuations was analyzed by means of Langevin simulations in the case when the interaction of the membrane with the substrate is twofold: a non-specific homogeneous harmonic potential is placed at large distances, whereas discrete ligand/receptor interactions occur at short distances from the flat substrate.
Abstract: We study equilibrium fluctuations of adherent membranes by means of Langevin simulations in the case when the interaction of the membrane with the substrate is twofold: a non-specific homogeneous harmonic potential is placed at large distances, whereas discrete ligand–receptor interactions occur at short distances from the flat substrate. We analyze the correlations between neighboring ligand–receptor bonds in a regime of relatively strong membrane fluctuations. By comparison with the random distribution of bonds, we find that the correlations between the bonds are always positive, suggesting spontaneous formation of domains. The equilibrium roughness of the membrane is then determined by fluctuations in the number density of bonds within the domains. Furthermore, we show that the excess number of bonds arising due to correlations and the instantaneous roughness of the membrane both follow master curves that depend only on the instantaneous bond density and not on the intrinsic binding strength of the ligand–receptor pair. The master curves show identical trends, further corroborating the link between membrane roughness and bond correlations.

27 citations

Journal ArticleDOI
01 Oct 2003-EPL
TL;DR: A theoretical model is developed to describe the vertical pulling of vesicles adhered in a contact potential that contains regions with either a unique bound shape or an additional meta-stable shape that unbind discontinuously upon pulling.
Abstract: We develop a theoretical model to describe the vertical pulling of vesicles adhered in a contact potential. For a range of applied forces, locally stable bound shapes, separated from the free shape by an energy barrier, can be found. The phase diagram contains regions with either a unique bound shape or an additional meta-stable shape. Upon pulling, these shapes unbind discontinuously since the vesicles disengage from the substrate while still possessing a finite adhesion area.

27 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations