scispace - formally typeset
Search or ask a question
Author

Udo Seifert

Bio: Udo Seifert is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Entropy production & Fluctuation theorem. The author has an hindex of 74, co-authored 308 publications receiving 22363 citations. Previous affiliations of Udo Seifert include Forschungszentrum Jülich & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces a thermodynamically consistent model for a discrete time crystal and analyzes it using the framework of stochastic thermodynamics to demonstrate that the emergence of coherent oscillations is possible even in the absence of synchronization.
Abstract: Discrete time crystals are periodically driven systems that display spontaneous symmetry breaking of time translation invariance in the form of indefinite subharmonic oscillations. We introduce a thermodynamically consistent model for a discrete time crystal and analyze it using the framework of stochastic thermodynamics. In particular, we evaluate the rate of energy dissipation of this many-body system of interacting noisy subharmonic oscillators in contact with a heat bath. The mean-field model displays the phenomenon of subharmonic synchronization, which corresponds to collective subharmonic oscillations of the individual units. The 2D model does not display synchronization but it does show a time-crystalline phase, which is characterized by a power-law behavior of the number of coherent subharmonic oscillations with system size. This result demonstrates that the emergence of coherent oscillations is possible even in the absence of synchronization.

11 citations

Journal ArticleDOI
TL;DR: In this article, conformal transformations are used to derive an exact geometrical relation for equilibrium vesicle shapes within the spontaneous curvature and bilayer coupling models, and stability criteria with respect to these transformations efficiently detect instabilities related to the breaking of reflection symmetry.
Abstract: Conformal transformations are used to derive an exact geometrical relation for equilibrium vesicle shapes within the spontaneous curvature and bilayer coupling models. Stability criteria with respect to these transformations efficiently detect instabilities related to the breaking of reflection symmetry.

11 citations

Journal ArticleDOI
01 Dec 2004-EPL
TL;DR: In this article, the authors show that in the case of a profile with two minima (like folded/unfolded), periodic driving leads to a stochastic resonance-like phenomenon.
Abstract: Mechanical single-molecule experiments probe the energy profile of biomolecules. We show that in the case of a profile with two minima (like folded/unfolded), periodic driving leads to a stochastic resonance-like phenomenon. We demonstrate that the analysis of such data can be used to extract four basic parameters of such a transition and discuss the statistical requirements of the data acquisition. As advantages of the proposed scheme, a polymeric linker is explicitly included and thermal fluctuations within each well need not be resolved.

11 citations

Posted Content
TL;DR: In this paper, the role of hidden slow degrees of freedom in a system of two magnetically coupled driven colloidal particles was investigated, and the apparent entropy based on the observation of just one particle obeys a fluctuation theorem-like symmetry with a slope of 1 in the short time limit.
Abstract: The validity of the fluctuation theorem for entropy production as deduced from the observation of trajectories implicitly requires that all slow degrees of freedom are accessible. We experimentally investigate the role of hidden slow degrees of freedom in a system of two magnetically coupled driven colloidal particles. The apparent entropy production based on the observation of just one particle obeys a fluctuation theorem-like symmetry with a slope of 1 in the short time limit. For longer times, we find a constant slope, but different from 1. We present theoretical arguments for a generic linear behavior both for small and large apparent entropy production but not necessarily throughout. By fine-tuning experimental parameters, such an intermediate nonlinear behavior can indeed be recovered in our system as well.

11 citations

Journal ArticleDOI
TL;DR: In this article, the unbinding of Gaussian polymers with bending energy and external tension parallel to the wall is studied by scaling arguments and transfer matrix methods in two spatial dimensions, and three different scaling regimes can be distinguished: (i) a stiff-rod regime, (ii) a semi-flexible regime, and (iii) a crumpled regime.
Abstract: The unbinding of Gaussian polymers with bending energy and external tension parallel to the wall is studied by scaling arguments and transfer matrix methods in two spatial dimensions. Unbinding transitions occur as the strength of the wall potential or the external tension is varied. Three different scaling regimes can be distinguished: (i) a stiff-rod regime; (ii) a semi-flexible regime; and (iii) a crumpled regime. Scaling functions are calculated numerically for the crossover behaviour.

10 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations