scispace - formally typeset
Search or ask a question
Author

Udo Seifert

Bio: Udo Seifert is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Entropy production & Fluctuation theorem. The author has an hindex of 74, co-authored 308 publications receiving 22363 citations. Previous affiliations of Udo Seifert include Forschungszentrum Jülich & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: For chemical reaction networks in a dilute solution described by a master equation, the authors define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stoChastic trajectory of reaction events.
Abstract: For chemical reaction networks in a dilute solution described by a master equation, the authors define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work, and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations such as a generalized Jarzynski relation and a generalized Clausius inequality are discussed. The authors illustrate these results for a three-species cyclic reaction network whi...

172 citations

Journal ArticleDOI
TL;DR: In this paper, the power and efficiency of miniaturized heat engines are related, which paves the way for studies of even smaller systems that experience quantum effects, such as quantum teleportation.
Abstract: Heat engines translate thermal energy into useful mechanical work. New results show how the power and efficiency of miniaturized heat engines are related, which paves the way for studies of even smaller systems that experience quantum effects.

170 citations

Journal ArticleDOI
TL;DR: In the presence of an attractive surface, a vesicle can undergo shape transformations between two different free states, between a free and a bound state, and between the two different bound states as discussed by the authors.
Abstract: In the presence of an attractive surface, a vesicle can undergo shape transformations between two different free states, between a free and a bound state, and between two different bound states. Adhesion can also lead to topological changes such as vesicle rupture and vesicle fusion. The interaction between the vesicle membrane and the surface is renormalized by thermally excited shape fluctuations. This renormalization leads to unbinding phenomena both for fluid and for polymerized (or solid-like) membranes.

169 citations

Journal ArticleDOI
Udo Seifert1
TL;DR: In this article, the dynamics of a single fluid bilayer membrane in an external hydrodynamic flow field is considered and the deterministic equation of motion for the configuration is derived taking into account both viscous dissipation in the surrounding liquid and local incompressibility of the membrane.
Abstract: The dynamics of a single fluid bilayer membrane in an external hydrodynamic flow field is considered. The deterministic equation of motion for the configuration is derived taking into account both viscous dissipation in the surrounding liquid and local incompressibility of the membrane. For quasi-spherical vesicles in shear flow, thermal fluctuations can be incorporated in a Langevin-type equation of motion for the deformation amplitudes. The solution to this equation shows an overdamped oscillatory approach to a stationary tanktreading shape. Inclination angle and ellipticity of the contour are determined as a function of excess area and shear rate. Comparisons to numerical results and experiments are discussed.

163 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a framework for extending the notions of classical thermodynamics like work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles.
Abstract: Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics like work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power, can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones like molecular motors, and heat engines like thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.

163 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations