scispace - formally typeset
Search or ask a question
Author

Uei-Ming Jow

Bio: Uei-Ming Jow is an academic researcher from Qualcomm. The author has contributed to research in topics: Capacitor & Printed circuit board. The author has an hindex of 15, co-authored 59 publications receiving 2088 citations. Previous affiliations of Uei-Ming Jow include North Carolina State University & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This work outlined the theoretical foundation of optimal power transmission efficiency in an inductive link, and combined it with semi-empirical models to predict parasitic components in PSCs to devise an iterative PSC design methodology that starts with a set of realistic design constraints and ends with the optimal PSC pair geometries.
Abstract: The next generation of implantable high-power neuroprosthetic devices such as visual prostheses and brain computer interfaces are going to be powered by transcutaneous inductive power links formed between a pair of printed spiral coils (PSC) that are batch-fabricated using micromachining technology. Optimizing the power efficiency of the wireless link is imperative to minimize the size of the external energy source, heating dissipation in the tissue, and interference with other devices. Previous design methodologies for coils made of 1-D filaments are not comprehensive and accurate enough to consider all geometrical aspects of PSCs with planar 3-D conductors as well as design constraints imposed by implantable device application and fabrication technology. We have outlined the theoretical foundation of optimal power transmission efficiency in an inductive link, and combined it with semi-empirical models to predict parasitic components in PSCs. We have used this foundation to devise an iterative PSC design methodology that starts with a set of realistic design constraints and ends with the optimal PSC pair geometries. We have executed this procedure on two design examples at 1 and 5 MHz achieving power transmission efficiencies of 41.2% and 85.8%, respectively, at 10-mm spacing. All results are verified with simulations using a commercial field solver (HFSS) as well as measurements using PSCs fabricated on printed circuit boards.

616 citations

Journal ArticleDOI
TL;DR: It is shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL, and an iterative design methodology is devised that provides the optimal coil geometries in a 3-coils inductive power transfer link.
Abstract: Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit-based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for a 13.56-MHz carrier frequency and 12-cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

537 citations

Journal ArticleDOI
TL;DR: A detailed model that includes the effects of the surrounding environment on the PSC parasitic components and eventually on the power transfer efficiency is constructed and an iterative design method that starts with a set of realistic design constraints and ends with the optimal PSC geometries is applied.
Abstract: Printed spiral coils (PSCs) are viable candidates for near-field wireless power transmission to the next generation of high-performance neuroprosthetic devices with extreme size constraints, which will target intraocular and intracranial spaces. Optimizing the PSC geometries to maximize the power transfer efficiency of the wireless link is imperative to reduce the size of the external energy source, heating of the tissue, and interference with other devices. Implantable devices need to be hermetically sealed in biocompatible materials and placed in a conductive environment with high permittivity (tissue), which can affect the PSC characteristics. We have constructed a detailed model that includes the effects of the surrounding environment on the PSC parasitic components and eventually on the power transfer efficiency. We have combined this model with an iterative design method that starts with a set of realistic design constraints and ends with the optimal PSC geometries. We applied our design methodology to optimize the wireless link of a 1-cm 2 implantable device example, operating at 13.56 MHz. Measurement results showed that optimized PSC pairs, coated with 0.3 mm of silicone, achieved 72.2%, 51.8%, and 30.8% efficiencies at a face-to-face relative distance of 10 mm in air, saline, and muscle, respectively. The PSC, which was optimized for air, could only bear 40.8% and 21.8% efficiencies in saline and muscle, respectively, showing that by including the PSC tissue environment in the design process the result can be more than a 9% improvement in the power transfer efficiency.

233 citations

Journal ArticleDOI
22 Nov 2010
TL;DR: Some of the resulting devices may find little use in their application domain, because the specifics of the targeted applications or the realistic needs of the end users may not be taken into account.
Abstract: We present an inductively powered 32-channel wireless integrated neural recording (WINeR) system-on-a-chip (SoC) to be ultimately used for one or more small freely behaving animals. The inductive powering is intended to relieve the animals from carrying bulky batteries used in other wireless systems, and enables long recording sessions. The WINeR system uses time-division multiplexing along with a novel power scheduling method that reduces the current in unused low-noise amplifiers (LNAs) to cut the total SoC power consumption. In addition, an on-chip high-efficiency active rectifier with optimized coils help improve the overall system power efficiency, which is controlled in a closed loop to supply stable power to the WINeR regardless of the coil displacements. The WINeR SoC has been implemented in a 0.5-μ m standard complementary metal-oxide semiconductor process, measuring 4.9×3.3 mm2 and consuming 5.85 mW at ±1.5 V when 12 out of 32 LNAs are active at any time by power scheduling. Measured input-referred noise for the entire system, including the receiver located at 1.2 m, is 4.95 μVrms in the 1 Hz~10 kHz range when the system is inductively powered with 7-cm separation between aligned coils.

206 citations

Journal ArticleDOI
TL;DR: The design methodology along with detailed simulation and measurement results for optimizing a multiband transcutaneous wireless link for high-performance implantable neuroprosthetic devices and compared the robustness of each design against horizontal misalignments and rotations in different directions are presented.
Abstract: We have presented the design methodology along with detailed simulation and measurement results for optimizing a multiband transcutaneous wireless link for high-performance implantable neuroprosthetic devices. We have utilized three individual carrier signals and coil/antenna pairs for power transmission, forward data transmission from outside into the body, and back telemetry in the opposite direction. Power is transmitted at 13.56 MHz through a pair of printed spiral coils (PSCs) facing each other. Two different designs have been evaluated for forward data coils, both of which help to minimize power carrier interference in the received data carrier. One is a pair of perpendicular coils that are wound across the diameter of the power PSCs. The other design is a pair of planar figure-8 coils that are in the same plane as the power PSCs. We have compared the robustness of each design against horizontal misalignments and rotations in different directions. Simulation and measurements are also conducted on a miniature spiral antenna, designed to operate with impulse-radio ultra-wideband (IR-UWB) circuitry for back telemetry.

121 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a critical review outlines recent magneto-inductive research activities on wireless power transfer with the transmission distance greater than the transmitter coil dimension, and summarizes the operating principles of a range of wireless power research into the maximum power transfer and the maximum energy efficiency principles.
Abstract: Starting from Tesla's principles of wireless power transfer a century ago, this critical review outlines recent magneto-inductive research activities on wireless power transfer with the transmission distance greater than the transmitter coil dimension. It summarizes the operating principles of a range of wireless power research into 1) the maximum power transfer and 2) the maximum energy efficiency principles. The differences and the implications of these two approaches are explained in terms of their energy efficiency and transmission distance capabilities. The differences between the system energy efficiency and the transmission efficiency are also highlighted. The review covers the two-coil systems, the four-coil systems, the systems with relay resonators and the wireless domino-resonator systems. Related issues including human exposure issues and reduction of winding resistance are also addressed. The review suggests that the use of the maximum energy efficiency principle in the two-coil systems is suitable for short-range rather than mid-range applications, the use of the maximum power transfer principle in the four-coil systems is good for maximizing the transmission distance, but is under a restricted system energy efficiency (<;50%); the use of the maximum energy efficiency principle in relay or domino systems may offer a good compromise for good system energy efficiency and transmission distance on the condition that relay resonators can be placed between the power source and the load.

1,209 citations

Journal ArticleDOI
TL;DR: This work has analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency, and a proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques.
Abstract: Resonance-based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This technique typically uses four coils as opposed to two coils used in conventional inductive links. In the four-coil system, the adverse effects of a low coupling coefficient between primary and secondary coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is improved. Unlike its two-coil counterpart, the efficiency profile of the power transfer is not a monotonically decreasing function of the operating distance and is less sensitive to changes in the distance between the primary and secondary coils. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. We have analyzed the four-coil energy transfer systems and outlined the effect of design parameters on power-transfer efficiency. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques. In the prototype system, for a power-link frequency of 700 kHz and a coil distance range of 10 to 20 mm, using a 22-mm diameter implantable coil resonance-based system shows a power-transfer efficiency of more than 80% with an enhanced operating range compared to ~40% efficiency achieved by a conventional two-coil system.

894 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications, with regard to network applications and discuss open issues and challenges in implementing wireless charging technologies.
Abstract: Wireless charging is a technology of transmitting power through an air gap to electrical devices for the purpose of energy replenishment. The recent progress in wireless charging techniques and development of commercial products have provided a promising alternative way to address the energy bottleneck of conventionally portable battery-powered devices. However, the incorporation of wireless charging into the existing wireless communication systems also brings along a series of challenging issues with regard to implementation, scheduling, and power management. In this paper, we present a comprehensive overview of wireless charging techniques, the developments in technical standards, and their recent advances in network applications. In particular, with regard to network applications, we review the static charger scheduling strategies, mobile charger dispatch strategies and wireless charger deployment strategies. Additionally, we discuss open issues and challenges in implementing wireless charging technologies. Finally, we envision some practical future network applications of wireless charging.

718 citations

Journal ArticleDOI
01 Mar 2018
TL;DR: In this paper, a comprehensive review of charging pad, power electronics configurations, compensation networks, controls, and standards is presented, along with a detailed analysis of the charging range of EVs.
Abstract: More than a century-old gasoline internal combustion engine is a major contributor to greenhouse gases. Electric vehicles (EVs) have the potential to achieve eco-friendly transportation. However, the major limitation in achieving this vision is the battery technology. It suffers from drawbacks such as high cost, rare material, low energy density, and large weight. The problems related to battery technology can be addressed by dynamically charging the EV while on the move. In-motion charging can reduce the battery storage requirement, which could significantly extend the driving range of an EV. This paper reviews recent advances in stationary and dynamic wireless charging of EVs. A comprehensive review of charging pad, power electronics configurations, compensation networks, controls, and standards is presented.

553 citations

Journal ArticleDOI
TL;DR: It is shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL, and an iterative design methodology is devised that provides the optimal coil geometries in a 3-coils inductive power transfer link.
Abstract: Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and interference with other devices. To improve the PTE, a 4-coil inductive link has been recently proposed. Through a comprehensive circuit-based analysis that can guide a design and optimization scheme, we have shown that despite achieving high PTE at larger coil separations, the 4-coil inductive links fail to achieve a high PDL. Instead, we have proposed a 3-coil inductive power transfer link with comparable PTE over its 4-coil counterpart at large coupling distances, which can also achieve high PDL. We have also devised an iterative design methodology that provides the optimal coil geometries in a 3-coil inductive power transfer link. Design examples of 2-, 3-, and 4-coil inductive links have been presented, and optimized for a 13.56-MHz carrier frequency and 12-cm coupling distance, showing PTEs of 15%, 37%, and 35%, respectively. At this distance, the PDL of the proposed 3-coil inductive link is 1.5 and 59 times higher than its equivalent 2- and 4-coil links, respectively. For short coupling distances, however, 2-coil links remain the optimal choice when a high PDL is required, while 4-coil links are preferred when the driver has large output resistance or small power is needed. These results have been verified through simulations and measurements.

537 citations