Author
Ujjwal K. Saha
Other affiliations: Indian Institute of Technology Bombay
Bio: Ujjwal K. Saha is an academic researcher from Indian Institute of Technology Guwahati. The author has contributed to research in topic(s): Diesel engine & Diesel fuel. The author has an hindex of 28, co-authored 120 publication(s) receiving 3565 citation(s). Previous affiliations of Ujjwal K. Saha include Indian Institute of Technology Bombay.
Topics: Diesel engine, Diesel fuel, Turbine, Rotor (electric), Wind tunnel
Papers published on a yearly basis
Papers
More filters
TL;DR: In this paper, the authors reviewed the performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel.
Abstract: Petroleum resources are finite and, therefore, search for their alternative non-petroleum fuels for internal combustion engines is continuing all over the world. Moreover gases emitted by petroleum fuel driven vehicles have an adverse effect on the environment and human health. There is universal acceptance of the need to reduce such emissions. Towards this, scientists have proposed various solutions for diesel engines, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as ‘dual-fuel engines’. Natural gas and bio-derived gas appear more attractive alternative fuels for dual-fuel engines in view of their friendly environmental nature. In the gas-fumigated dual-fuel engine, the primary fuel is mixed outside the cylinder before it is inducted into the cylinder. A pilot quantity of liquid fuel is injected towards the end of the compression stroke to initiate combustion. When considering a gaseous fuel for use in existing diesel engines, a number of issues which include, the effects of engine operating and design parameters, and type of gaseous fuel, on the performance of the dual-fuel engines, are important. This paper reviews the research on above issues carried out by various scientists in different diesel engines. This paper touches upon performance, combustion and emission characteristics of dual-fuel engines which use natural gas, biogas, producer gas, methane, liquefied petroleum gas, propane, etc. as gaseous fuel. It reveals that ‘dual-fuel concept’ is a promising technique for controlling both NOx and soot emissions even on existing diesel engine. But, HC, CO emissions and ‘bsfc’ are higher for part load gas diesel engine operations. Thermal efficiency of dual-fuel engines improve either with increased engine speed, or with advanced injection timings, or with increased amount of pilot fuel. The ignition characteristics of the gaseous fuels need more research for a long-term use in a dual-fuel engine. It is found that, the selection of engine operating and design parameters play a vital role in minimizing the performance divergences between an existing diesel engine and a ‘gas diesel engine’.
447 citations
TL;DR: In this article, wind tunnel tests were conducted to assess the aerodynamic performance of single-, two-and three-stage Savonius rotor systems with both semicircular and twisted blades.
Abstract: Wind tunnel tests were conducted to assess the aerodynamic performance of single-, two- and three-stage Savonius rotor systems. Both semicircular and twisted blades have been used in either case. A family of rotor systems has been manufactured with identical stage aspect ratio keeping the identical projected area of each rotor. Experiments were carried out to optimize the different parameters like number of stages, number of blades (two and three) and geometry of the blade (semicircular and twisted). A further attempt was made to investigate the performance of two-stage rotor system by inserting valves on the concave side of blade.
278 citations
TL;DR: In this paper, a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0°) on the basis of starting characteristics, static torque and rotational speed.
Abstract: The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0°). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle.
226 citations
TL;DR: In this paper, the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas was investigated, where a 3.5-kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogAS run dual-fuel diesel engine by connecting a venturi gas mixer at the manifold.
Abstract: The energy consumption of the world is increasing at a staggering rate due to population explosion. The extensive use of energy has led to fossil fuel depletion and the rise in pollution. Renewable energy holds the key solution to these aforementioned problems. Biogas, one such renewable fuel, can be used in a diesel engine under dual fuel mode for the generation of power. This work attempts to unfold the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. For this investigation, a 3.5 kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. Experiments have been conducted at various compression ratios (18, 17.5, 17 and 16) and under different loading conditions fixing the standard injection timing at 23° before top dead centre. At 100% load, the brake thermal efficiencies of the dual fuel mode are found to be 20.04%, 18.25%, 17.07% and 16.42% at compression ratios of 18, 17.5, 17 and 16, respectively, whereas at the same load, the diesel mode shows an efficiency of 27.76% at a compression ratio of 17.5. The maximum replacement of the precious fossil fuel is found to be 79.46%, 76.1%, 74% and 72% at compression ratios of 18, 17.5, 17 and 16, respectively at 100% load. For the dual fuel mode, on an average, there is a reduction in carbon monoxide as well as hydrocarbon emission by 26.22% and 41.97% when compression ratio was increased from 16 to 18. However, for the same setting of compression ratios, there is an increase of oxides of nitrogen as well carbon dioxide emissions by 66.65% and 27.18% respectively. In all the test cases, carbon monoxide and hydrocarbon emissions under dual fuel mode are found to be more than the diesel mode due to the reduction of volumetric efficiency of the former. The experimental evidence suggests to operate the dual fuel diesel engine at high compression ratios.
183 citations
TL;DR: A series of experiments have been carried out in a developed liquid sloshing setup to estimate the pressure developed on the tank walls and the free surface displacement of water from the mean static level.
Abstract: A series of experiments have been carried out in a developed liquid sloshing setup to estimate the pressure developed on the tank walls and the free surface displacement of water from the mean static level. The square tank attached to a shaking table can be moved to and fro by a cam arrangement driven by a DC motor. Pressure and displacement studies are done on the basis of changing excitation frequency of the shaking table and fill level in the tank. Experiments were carried out without and with baffles, and the consequent changes in the parameters are observed.
151 citations
Cited by
More filters
01 Jan 2002
TL;DR: In this article, the aerodynamic design and performance of VAWTs based on the Darrieus concept is discussed, as well as future trends in design and the inherent socioeconomic and environmental friendly aspects of wind energy as an alternate source of energy.
Abstract: Wind energy is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal-Axis Wind Turbine (HAWT) or a Vertical-Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.
549 citations
TL;DR: In this article, a dual-fuel engine with high-cetane fuel and natural gas injection is used to provide a source of ignition for the charge of a spark-ignition (SI) engine.
Abstract: Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO x ) emissions, while producing lower emissions of carbon dioxide (CO 2 ), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO x emissions. High NO x emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas–hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO x and CO 2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.
518 citations
TL;DR: In this paper, the authors provide a perspective on the past, present and future of Computational Wind Engineering (CWE) and provide a more detailed view on CFD simulation of pedestrian-level wind conditions around buildings.
Abstract: In the past 50 years, Computational Wind Engineering (CWE) has undergone a successful transition from an emerging field into an increasingly established field in wind engineering research, practice and education. This paper provides a perspective on the past, present and future of CWE. It addresses three key illustrations of the success of CWE: (1) the establishment of CWE as an individual research and application area in wind engineering with its own successful conference series under the umbrella of the International Association of Wind Engineering (IAWE); (2) the increasing range of topics covered in CWE; and (3) the history of overview and review papers in CWE. The paper also outlines some of the earliest achievements in CWE and the resulting development of best practice guidelines. It provides some views on the complementary relationship between reduced-scale wind-tunnel testing and CFD. It re-iterates some important quotes made by CWE and/or CFD researchers in the past, many of which are still equally valid today and which are provided without additional comments, to let the quotes speak for themselves. Next, as application examples to the foregoing sections, the paper provides a more detailed view on CFD simulation of pedestrian-level wind conditions around buildings, CFD simulation of natural ventilation of buildings and CFD simulation of wind-driven rain on building facades. Finally, a non-exhaustive perspective on the future of CWE is provided.
449 citations
TL;DR: In this paper, the importance of urban physics related to the grand societal challenges is described, after which the spatial and temporal scales in urban physics and the associated model categories are outlined.
Abstract: Urban physics is the science and engineering of physical processes in urban areas. It basically refers to the transfer of heat and mass in the outdoor and indoor urban environment, and its interaction with humans, fauna, flora and materials. Urban physics is a rapidly increasing focus area as it is key to understanding and addressing the grand societal challenges climate change, energy, health, security, transport and aging. The main assessment tools in urban physics are field measurements, full-scale and reduced-scale laboratory measurements and numerical simulation methods including Computational Fluid Dynamics (CFD). In the past 50 years, CFD has undergone a successful transition from an emerging field into an increasingly established field in urban physics research, practice and design. This review and position paper consists of two parts. In the first part, the importance of urban physics related to the grand societal challenges is described, after which the spatial and temporal scales in urban physics and the associated model categories are outlined. In the second part, based on a brief theoretical background, some views on CFD are provided. Possibilities and limitations are discussed, and in particular, ten tips and tricks towards accurate and reliable CFD simulations are presented. These tips and tricks are certainly not intended to be complete, rather they are intended to complement existing CFD best practice guidelines on ten particular aspects. Finally, an outlook to the future of CFD for urban physics is given.
447 citations
TL;DR: An attempt has been made to review the applications of fuzzy logic based models in renewable energy systems namely solar, wind, bio-energy, micro-grid and hybrid applications and indicates that fuzzy based models provide realistic estimates.
Abstract: In recent years, with the advent of globalization, the world is witnessing a steep rise in its energy consumption. The world is transforming itself into an industrial and knowledge society from an agricultural one which in turn makes the growth, energy intensive resulting in emissions. Energy modeling and energy planning is vital for the future economic prosperity and environmental security. Soft computing techniques such as fuzzy logic, neural networks, genetic algorithms are being adopted in energy modeling to precisely map the energy systems. In this paper, an attempt has been made to review the applications of fuzzy logic based models in renewable energy systems namely solar, wind, bio-energy, micro-grid and hybrid applications. It is found that fuzzy based models are extensively used in recent years for site assessment, for installing of photovoltaic/wind farms, power point tracking in solar photovoltaic/wind, optimization among conflicting criteria. The review indicates that fuzzy based models provide realistic estimates.
324 citations