scispace - formally typeset
Search or ask a question
Author

Ulla Bonas

Bio: Ulla Bonas is an academic researcher from Martin Luther University of Halle-Wittenberg. The author has contributed to research in topics: Xanthomonas campestris & Effector. The author has an hindex of 64, co-authored 118 publications receiving 15034 citations. Previous affiliations of Ulla Bonas include Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
11 Dec 2009-Science
TL;DR: The functionality of a distinct type of DNA binding domain is described and allows the design ofDNA binding domains for biotechnology.
Abstract: The pathogenicity of many bacteria depends on the injection of effector proteins via type III secretion into eukaryotic cells in order to manipulate cellular processes. TAL (transcription activator-like) effectors from plant pathogenic Xanthomonas are important virulence factors that act as transcriptional activators in the plant cell nucleus, where they directly bind to DNA via a central domain of tandem repeats. Here, we show how target DNA specificity of TAL effectors is encoded. Two hypervariable amino acid residues in each repeat recognize one base pair in the target DNA. Recognition sequences of TAL effectors were predicted and experimentally confirmed. The modular protein architecture enabled the construction of artificial effectors with new specificities. Our study describes the functionality of a distinct type of DNA binding domain and allows the design of DNA binding domains for biotechnology.

2,656 citations

Journal ArticleDOI
TL;DR: The discovery of TAL effectors is described, which act as transcriptional activators in the plant cell nucleus and are determined by a novel modular DNA-binding domain.
Abstract: Xanthomonads are bacterial plant pathogens that cause diseases on many plant species, including important crops. Key to pathogenicity of most Xanthomonas pathovars is a Hrp-type III secretion (T3S) system that translocates effector proteins into plant cells. Within the eukaryotic cell, the effectors are thought to perform a variety of tasks to support bacterial virulence, proliferation, and dissemination. We are only beginning to understand the host targets of different effectors. The largest effector family found in Xanthomonas spp. is the AvrBs3/PthA or TAL (transcription activator-like) family. TAL effectors act as transcriptional activators in the plant cell nucleus. Specificity of TAL effectors is determined by a novel modular DNA-binding domain. Here, we describe the discovery of TAL effectors and their structure, activity, and host targets.

968 citations

Journal ArticleDOI
26 Oct 2007-Science
TL;DR: It is shown that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain that provokes developmental reprogramming of host cells by mimicking eukaryotic transcription factors.
Abstract: Pathogenicity of many Gram-negative bacteria relies on the injection of effector proteins by type III secretion into eukaryotic cells, where they modulate host signaling pathways to the pathogen's benefit. One such effector protein injected by Xanthomonas into plants is AvrBs3, which localizes to the plant cell nucleus and causes hypertrophy of plant mesophyll cells. We show that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain. AvrBs3 binds to a conserved element in the upa20 promoter via its central repeat region and induces gene expression through its activation domain. Thus, AvrBs3 and likely other members of this family provoke developmental reprogramming of host cells by mimicking eukaryotic transcription factors.

648 citations

Journal ArticleDOI
26 Oct 2007-Science
TL;DR: The data suggest a recognition mechanism in which the Avr protein binds and activates the promoter of the cognate R gene, and a recognition specificity resides in the Bs3 and Bs2-E promoters and is determined by binding of Avr3 or AvrBs3Δrep16 to a defined promoter region.
Abstract: Plant disease resistance (R) proteins recognize matching pathogen avirulence proteins. Alleles of the pepper R gene Bs3 mediate recognition of the Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Pepper Bs3 and its allelic variant Bs3-E encode flavin monooxygenases with a previously unknown structure and are transcriptionally activated by the Xcv effector proteins AvrBs3 and AvrBs3Deltarep16, respectively. We found that recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by binding of AvrBs3 or AvrBs3Deltarep16 to a defined promoter region. Our data suggest a recognition mechanism in which the Avr protein binds and activates the promoter of the cognate R gene.

479 citations

Journal ArticleDOI
TL;DR: In this review, the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species are summarized.
Abstract: Plant pathogenic bacteria of the genus Xanthomonas cause a variety of diseases in economically important monocotyledonous and dicotyledonous crop plants worldwide Successful infection and bacterial multiplication in the host tissue often depend on the virulence factors secreted including adhesins, polysaccharides, LPS and degradative enzymes One of the key pathogenicity factors is the type III secretion system, which injects effector proteins into the host cell cytosol to manipulate plant cellular processes such as basal defense to the benefit of the pathogen The coordinated expression of bacterial virulence factors is orchestrated by quorum-sensing pathways, multiple two-component systems and transcriptional regulators such as Clp, Zur, FhrR, HrpX and HpaR Furthermore, virulence gene expression is post-transcriptionally controlled by the RNA-binding protein RsmA In this review, we summarize the current knowledge on the infection strategies and regulatory networks controlling secreted virulence factors from Xanthomonas species

428 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
15 Feb 2013-Science
TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.
Abstract: Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

12,265 citations

01 Feb 2013
TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Abstract: Genome Editing Clustered regularly interspaced short palindromic repeats (CRISPR) function as part of an adaptive immune system in a range of prokaryotes: Invading phage and plasmid DNA is targeted for cleavage by complementary CRISPR RNAs (crRNAs) bound to a CRISPR-associated endonuclease (see the Perspective by van der Oost). Cong et al. (p. 819, published online 3 January) and Mali et al. (p. 823, published online 3 January) adapted this defense system to function as a genome editing tool in eukaryotic cells. A bacterial genome defense system is adapted to function as a genome-editing tool in mammalian cells. [Also see Perspective by van der Oost] Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.

10,746 citations

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Abstract: Many plant-associated microbes are pathogens that impair plant growth and reproduction. Plants respond to infection using a two-branched innate immune system. The first branch recognizes and responds to molecules common to many classes of microbes, including non-pathogens. The second responds to pathogen virulence factors, either directly or through their effects on host targets. These plant immune systems, and the pathogen molecules to which they respond, provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms. A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production.

10,539 citations

Journal ArticleDOI
TL;DR: A set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies are described.
Abstract: Targeted nucleases are powerful tools for mediating genome alteration with high precision. The RNA-guided Cas9 nuclease from the microbial clustered regularly interspaced short palindromic repeats (CRISPR) adaptive immune system can be used to facilitate efficient genome engineering in eukaryotic cells by simply specifying a 20-nt targeting sequence within its guide RNA. Here we describe a set of tools for Cas9-mediated genome editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in mammalian cells, as well as generation of modified cell lines for downstream functional studies. To minimize off-target cleavage, we further describe a double-nicking strategy using the Cas9 nickase mutant with paired guide RNAs. This protocol provides experimentally derived guidelines for the selection of target sites, evaluation of cleavage efficiency and analysis of off-target activity. Beginning with target design, gene modifications can be achieved within as little as 1-2 weeks, and modified clonal cell lines can be derived within 2-3 weeks.

8,663 citations