scispace - formally typeset
Search or ask a question
Author

Ulrich Grözinger

Other affiliations: European Southern Observatory
Bio: Ulrich Grözinger is an academic researcher from Max Planck Society. The author has contributed to research in topics: Exoplanet & Spectrometer. The author has an hindex of 18, co-authored 52 publications receiving 4704 citations. Previous affiliations of Ulrich Grözinger include European Southern Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
R. Abuter, Matteo Accardo, António Amorim, Narsireddy Anugu, G. Avila, N. Azouaoui, Myriam Benisty, Jean-Philippe Berger, Nicolas Blind, H. Bonnet, Pierre Bourget, Wolfgang Brandner, R. Brast, A. Buron, Leonard Burtscher, Frédéric Cassaing, F. Chapron, Elodie Choquet, Y. Clénet, C. Collin, V. Coudé du Foresto, W. J. de Wit, P. T. de Zeeuw, Casey Deen, F. Delplancke-Ströbele, Roderick Dembet, Frederic Derie, Jason Dexter, Gilles Duvert, M. Ebert, Andreas Eckart, Frank Eisenhauer, Michael Esselborn, P. Fédou, G. Finger, Paulo J. V. Garcia, C. E. Garcia Dabo, R. J. García López, Eric Gendron, R. Genzel, Stefan Gillessen, Frédéric Gonté, Paulo Gordo, M. Grould, Ulrich Grözinger, S. Guieu, P. Haguenauer, O. Hans, Xavier Haubois, M. Haug, F. Haussmann, Th. Henning, Stefan Hippler, Matthew Horrobin, Armin Huber, Z. Hubert, N. Hubin, Christian A. Hummel, Gerd Jakob, A. Janssen, Lieselotte Jochum, Laurent Jocou, Andreas Kaufer, S. Kellner, L. Kern, Pierre Kervella, Mario Kiekebusch, Ralf Klein, Yitping Kok, Johann Kolb, Martin Kulas, Sylvestre Lacour, Vincent Lapeyrere, B. Lazareff, J.-B. Le Bouquin, Pierre Léna, Rainer Lenzen, Samuel Lévêque, Magdalena Lippa, Yves Magnard, Leander Mehrgan, M. Mellein, Antoine Mérand, J. Moreno-Ventas, Thibaut Moulin, Ewald Müller, F. Müller, Udo Neumann, S. Oberti, T. Ott, L. Pallanca, Johana Panduro, Luca Pasquini, T. Paumard, Isabelle Percheron, K. Perraut, Guy Perrin, A. Pflüger, O. Pfuhl, T. Phan Duc, P. M. Plewa, Dan Popovic, Sebastian Rabien, A. Ramirez, Juan-Luis Ramos, C. Rau, M. Riquelme, R.-R. Rohloff, G. Rousset, J. Sanchez-Bermudez, Silvia Scheithauer, Markus Schöller, Nicolas Schuhler, Jason Spyromilio, Christian Straubmeier, Eckhard Sturm, Marcos Suarez, Konrad R. W. Tristram, N. Ventura, F. H. Vincent, Idel Waisberg, Imke Wank, J. Weber, Ekkehard Wieprecht, M. Wiest, Erich Wiezorrek, Markus Wittkowski, Julien Woillez, Burkhard Wolff, Senol Yazici, D. Ziegler, Gérard Zins 
TL;DR: GRAVITY as mentioned in this paper is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m$^2$.
Abstract: GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m$^2$. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual beam operation and laser metrology [...]. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase tracking on stars as faint as m$_K$ ~ 10 mag, phase-referenced interferometry of objects fainter than m$_K$ ~ 15 mag with a limiting magnitude of m$_K$ ~ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25 %, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than 10 microarcseconds ({\mu}as). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 {\mu}as when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic Center supermassive black hole and its fast orbiting star S2 for phase referenced dual beam observations and infrared wavefront sensing, the High Mass X-Ray Binary BP Cru and the Active Galactic Nucleus of PDS 456 for few {\mu}as spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, {\xi} Tel and 24 Cap for high accuracy visibility observations, and {\eta} Car for interferometric imaging with GRAVITY.

391 citations

Journal ArticleDOI
Roberto Abuter1, Matteo Accardo1, António Amorim2, Narsireddy Anugu3, G. Avila1, N. Azouaoui4, Myriam Benisty5, Jean-Philippe Berger5, Nicolas Blind6, H. Bonnet1, Pierre Bourget1, Wolfgang Brandner7, R. Brast1, A. Buron7, Leonard Burtscher7, Frédéric Cassaing, F. Chapron4, Elodie Choquet4, Yann Clénet4, C. Collin4, V. Coudé du Foresto4, W. J. de Wit1, P. T. de Zeeuw8, P. T. de Zeeuw1, Casey Deen7, F. Delplancke-Ströbele1, R. Dembet4, Frederic Derie1, Jason Dexter7, Gilles Duvert5, M. Ebert7, Andreas Eckart9, Andreas Eckart7, Frank Eisenhauer7, Michael Esselborn1, P. Fédou4, Gert Finger1, Paulo J. V. Garcia3, C. E. Garcia Dabo1, R. Garcia Lopez7, Eric Gendron4, R. Genzel7, Stefan Gillessen7, Frédéric Gonté1, Paulo Gordo2, M. Grould4, Ulrich Grözinger7, S. Guieu5, S. Guieu1, Pierre Haguenauer1, O. Hans7, Xavier Haubois1, Marcus Haug7, F. Haussmann7, Th. Henning7, Stefan Hippler7, Matthew Horrobin9, Armin Huber7, Z. Hubert4, Norbert Hubin1, Christian A. Hummel1, Gerd Jakob1, A. Janssen7, Lieselotte Jochum1, Laurent Jocou5, Andreas Kaufer1, S. Kellner7, Sarah Kendrew10, Sarah Kendrew7, L. Kern1, Pierre Kervella4, Pierre Kervella11, Mario Kiekebusch1, Ralf Klein7, Yitping Kok7, Johann Kolb1, Martin Kulas7, Sylvestre Lacour4, V. Lapeyrère4, Bernard Lazareff5, J.-B. Le Bouquin5, Pierre Léna4, Rainer Lenzen7, Samuel Lévêque1, Magdalena Lippa7, Yves Magnard5, Leander Mehrgan1, M. Mellein7, Antoine Mérand1, J. Moreno-Ventas7, Thibaut Moulin5, Ewald Müller7, Ewald Müller1, F. Müller7, Udo Neumann7, Sylvain Oberti1, T. Ott7, Laurent Pallanca1, Johana Panduro7, Luca Pasquini1, Thibaut Paumard4, Isabelle Percheron1, Karine Perraut5, Guy Perrin4, A. Pflüger7, Oliver Pfuhl7, T. Phan Duc1, P. M. Plewa7, Dan Popovic1, Sebastian Rabien7, A. Ramirez1, Joany Andreina Manjarres Ramos7, C. Rau7, M. Riquelme1, R.-R. Rohloff7, Gérard Rousset4, J. Sanchez-Bermudez7, Silvia Scheithauer7, Markus Schöller1, Nicolas Schuhler1, Jason Spyromilio1, Christian Straubmeier9, Eckhard Sturm7, Marcos Suarez1, Konrad R. W. Tristram1, N. Ventura5, Frederic H. Vincent4, Idel Waisberg7, Imke Wank9, J. Weber7, Ekkehard Wieprecht7, M. Wiest9, Erich Wiezorrek7, Markus Wittkowski1, Julien Woillez1, Burkhard Wolff1, Senol Yazici7, D. Ziegler4, Gérard Zins1 
TL;DR: GRAVITY as discussed by the authors is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2.
Abstract: GRAVITY is a new instrument to coherently combine the light of the European Southern Observatory Very Large Telescope Interferometer to form a telescope with an equivalent 130 m diameter angular resolution and a collecting area of 200 m2. The instrument comprises fiber fed integrated optics beam combination, high resolution spectroscopy, built-in beam analysis and control, near-infrared wavefront sensing, phase-tracking, dual-beam operation, and laser metrology. GRAVITY opens up to optical/infrared interferometry the techniques of phase referenced imaging and narrow angle astrometry, in many aspects following the concepts of radio interferometry. This article gives an overview of GRAVITY and reports on the performance and the first astronomical observations during commissioning in 2015/16. We demonstrate phase-tracking on stars as faint as mK ≈ 10 mag, phase-referenced interferometry of objects fainter than mK ≈ 15 mag with a limiting magnitude of mK ≈ 17 mag, minute long coherent integrations, a visibility accuracy of better than 0.25%, and spectro-differential phase and closure phase accuracy better than 0.5°, corresponding to a differential astrometric precision of better than ten microarcseconds (μas). The dual-beam astrometry, measuring the phase difference of two objects with laser metrology, is still under commissioning. First observations show residuals as low as 50 μas when following objects over several months. We illustrate the instrument performance with the observations of archetypical objects for the different instrument modes. Examples include the Galactic center supermassive black hole and its fast orbiting star S2 for phase referenced dual-beam observations and infrared wavefront sensing, the high mass X-ray binary BP Cru and the active galactic nucleus of PDS 456 for a few μas spectro-differential astrometry, the T Tauri star S CrA for a spectro-differential visibility analysis, ξ Tel and 24 Cap for high accuracy visibility observations, and η Car for interferometric imaging with GRAVITY.

347 citations

Proceedings ArticleDOI
A. Quirrenbach, Pedro J. Amado1, Jose A. Caballero, Reinhard Mundt2, Ansgar Reiners, Ignasi Ribas3, Walter Seifert, Miguel Abril1, Jesús Aceituno, F. J. Alonso-Floriano4, M. Ammler-von Eiff, R. Antona Jiménez1, H. Anwand-Heerwart, M. Azzaro, F. F. Bauer, David Barrado, S. Becerril1, Víctor J. S. Béjar1, D. Benítez, Z. M. Berdiñas1, M. C. Cárdenas1, E. Casal1, A. Claret1, Josep Colomé3, M. Cortés-Contreras4, S. Czesla, M. Doellinger, S. Dreizler, C. Feiz, M. Fernandez1, D. Galadí, M. C. Gálvez-Ortiz, A. Garcia-Piquer3, M. L. García-Vargas, R. Garrido1, Lluis Gesa3, V. Gómez Galera, E. González Álvarez4, J. I. González Hernández1, Ulrich Grözinger2, J. Guàrdia3, Eike W. Guenther, E. de Guindos, Juan Gutiérrez-Soto1, H. J. Hagen, A. P. Hatzes, Peter H. Hauschildt, J. Helmling, Th. Henning2, D. Hermann2, L. Hernández Castaño, E. Herrero3, D. Hidalgo4, G. Holgado4, Armin Huber2, K. F. Huber, Sandra V. Jeffers, Viki Joergens2, E. de Juan, M. Kehr, Ralf Klein2, Martin Kürster2, A. Lamert, S. Lalitha, Werner Laun2, U. Lemke, Rainer Lenzen2, Mauro López del Fresno, B. López Martí, Javier López-Santiago4, Ulrich Mall2, Holger Mandel, Eduardo L. Martín, Susana Martín-Ruiz1, H. Martínez-Rodríguez4, C. J. Marvin, Richard J. Mathar2, E. Mirabet1, D. Montes4, R. Morales Muñoz1, A. Moya, Vianak Naranjo2, Aviv Ofir, R. Oreiro1, Enric Palle1, Johana Panduro2, V. M. Passegger, Ana Pérez-Calpena, D. Pérez Medialdea1, Manuel Perger3, M. Pluto, A. Ramón1, Rafael Rebolo1, P. Redondo1, Sabine Reffert, S. Reinhardt, P. Rhode, H. W. Rix2, Florian Rodler2, E. Rodriguez1, Cristina Rodríguez-López1, E. Rodríguez-Pérez1, R.-R. Rohloff2, A. Rosich3, Ernesto Sánchez-Blanco1, M. A. Sánchez Carrasco1, Jorge Sanz-Forcada, L. F. Sarmiento, Sebastian Schafer, J. Schiller, C. Schmidt, J. H. M. M. Schmitt, E. Solano, Otmar Stahl, Clemens Storz2, J. Stürmer, Juan Carlos Suárez1, R. G. Ulbrich, G. Veredas, Karl Wagner, J. Winkler, M. R. Zapatero Osorio, Mathias Zechmeister, F. J. Abellán de Paco4, Guillem Anglada-Escudé5, C. del Burgo6, A. Klutsch7, J. L. Lizon, Mercedes Lopez-Morales8, Juan Carlos Morales, M. A. C. Perryman9, Simon Tulloch, W. Xu 
TL;DR: CARMENES (Calar Alto high-resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions as discussed by the authors.
Abstract: This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ∽ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (γ band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 -1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 -1.7 μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coude laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within ±0.01oC over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ∽ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature.

207 citations

Journal ArticleDOI
Ansgar Reiners1, Mathias Zechmeister1, Jose A. Caballero2, Ignasi Ribas3  +177 moreInstitutions (18)
TL;DR: In this article, the CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets and the authors present an atlas of high resolution M-dwarf spectra and compare the spectra to atmospheric models.
Abstract: The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520–1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q , and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700–900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s−1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3–4 m s−1 .

199 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and sub-millimetre spectral range 55 671 m.
Abstract: Herschel was launched on 14 May 2009, and is now an operational ESA space observatory o ering unprecedented observational capabilities in the far-infrared and submillimetre spectral range 55 671 m. Herschel carries a 3.5 metre diameter passively cooled Cassegrain telescope, which is the largest of its kind and utilises a novel silicon carbide technology. The science payload comprises three instruments: two direct detection cameras/medium resolution spectrometers, PACS and SPIRE, and a very high-resolution heterodyne spectrometer, HIFI, whose focal plane units are housed inside a superfluid helium cryostat. Herschel is an observatory facility operated in partnership among ESA, the instrument consortia, and NASA. The mission lifetime is determined by the cryostat hold time. Nominally approximately 20,000 hours will be available for astronomy, 32% is guaranteed time and the remainder is open to the worldwide general astronomical community through a standard competitive proposal procedure.

3,359 citations

Journal ArticleDOI
TL;DR: The Photodetector Array Camera and Spectrometer (PACS) as discussed by the authors is one of the three science instruments on ESA's far infrared and sub-mil- limetre observatory.
Abstract: The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submil- limetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photom- etry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μ mo r 85−125 μ ma nd 125−210 μm, over a field of view of ∼1.75 � × 3.5 � , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images afi eld of 47 �� × 47 �� , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.

2,645 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
Matthew Joseph Griffin, Alain Abergel1, A. Abreu, Peter A. R. Ade2  +186 moreInstitutions (27)
TL;DR: The Spectral and Photometric Imaging REceiver (SPIRE) is the Herschel Space Observatory's sub-millimetre camera and spectrometer as discussed by the authors, which is used for image and spectroscopic data acquisition.
Abstract: The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz) The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 03 K The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired The spectrometer has an approximately circular field of view with a diameter of 26' The spectral resolution can be adjusted between 12 and 25 GHz by changing the stroke length of the FTS scan mirror Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 15-2

2,425 citations

Journal ArticleDOI
TL;DR: In this paper, the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the'science demonstration phase' of Herschel, were summarized.
Abstract: We summarize the first results from the Gould Belt survey, obtained toward the Aquila Rift and Polaris Flare regions during the 'science demonstration phase' of Herschel. Our 70-500 micron images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between ~ 350 and 500 prestellar cores and ~ 45-60 Class 0 protostars can be identified in the Aquila field, while ~ unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.

1,542 citations