scispace - formally typeset
Search or ask a question
Author

Ulrich Hopp

Bio: Ulrich Hopp is an academic researcher from Max Planck Society. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 57, co-authored 317 publications receiving 13028 citations. Previous affiliations of Ulrich Hopp include Technical University of Berlin & European Southern Observatory.


Papers
More filters
Posted Content
K. C. Chambers, E. A. Magnier, Nigel Metcalfe, H. Flewelling, M. E. Huber, Christopher Waters, L. Denneau, Peter W. Draper, Daniel J. Farrow, D. P. Finkbeiner, C. Holmberg, J. Koppenhoefer, P. A. Price, A. Rest, Roberto P. Saglia, Edward F. Schlafly, Stephen J. Smartt, W. E. Sweeney, R. J. Wainscoat, W. S. Burgett, S. Chastel, T. Grav, J. N. Heasley, Klaus W. Hodapp, Robert Jedicke, Nick Kaiser, R. P. Kudritzki, G. A. Luppino, Robert H. Lupton, David G. Monet, John Morgan, Peter M. Onaka, Bernie Shiao, Christopher W. Stubbs, John L. Tonry, R. L. White, Eduardo Bañados, Eric F. Bell, Ralf Bender, Edouard J. Bernard, M. Boegner, F. Boffi, M. T. Botticella, Annalisa Calamida, Stefano Casertano, W.-P. Chen, X. Chen, Shaun Cole, Niall R. Deacon, C. Frenk, Alan Fitzsimmons, Suvi Gezari, V. Gibbs, C. Goessl, T. Goggia, R. Gourgue, Bertrand Goldman, Phillip Grant, Eva K. Grebel, Nigel Hambly, G. Hasinger, Alan Heavens, Timothy M. Heckman, Robert Henderson, Th. Henning, M. J. Holman, Ulrich Hopp, Wing-Huen Ip, S. Isani, M. Jackson, C. D. Keyes, Anton M. Koekemoer, Rubina Kotak, D. Le, D. Liska, K. S. Long, John R. Lucey, M. Liu, Nicolas F. Martin, G. Masci, Brian McLean, E. Mindel, P. Misra, E. Morganson, David Murphy, A. Obaika, Gautham Narayan, M. Nieto-Santisteban, Peder Norberg, John A. Peacock, E. A. Pier, Marc Postman, N. Primak, C. Rae, A. Rai, Adam G. Riess, A. Riffeser, H. W. Rix, Siegfried Röser, R. Russel, L. Rutz, Elena Schilbach, A. S. B. Schultz, Daniel Scolnic, Louis Gregory Strolger, Alexander S. Szalay, Stella Seitz, E. Small, K. W. Smith, D. R. Soderblom, P. Taylor, Robert R. Thomson, Andy Taylor, A. R. Thakar, J. Thiel, D. A. Thilker, D. Unger, Yuji Urata, Jeff A. Valenti, J. Wagner, T. Walder, Fabian Walter, S. Watters, S. Werner, W. M. Wood-Vasey, R. F. G. Wyse 
TL;DR: Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the 3ππ$ Steradian Survey and the Medium Deep Survey in 5 bands as mentioned in this paper.
Abstract: Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the $3\pi$ Steradian Survey and the Medium Deep Survey in 5 bands ($grizy_{P1}$). The mean 5$\sigma$ point source limiting sensitivities in the stacked 3$\pi$ Steradian Survey in $grizy_{P1}$ are (23.3, 23.2, 23.1, 22.3, 21.4) respectively. The upper bound on the systematic uncertainty in the photometric calibration across the sky is 7-12 millimag depending on the bandpass. The systematic uncertainty of the astrometric calibration using the Gaia frame comes from a comparison of the results with Gaia: the standard deviation of the mean and median residuals ($ \Delta ra, \Delta dec $) are (2.3, 1.7) milliarcsec, and (3.1, 4.8) milliarcsec respectively. The Pan-STARRS system and the design of the PS1 surveys are described and an overview of the resulting image and catalog data products and their basic characteristics are described together with a summary of important results. The images, reduced data products, and derived data products from the Pan-STARRS1 surveys are available to the community from the Mikulski Archive for Space Telescopes (MAST) at STScI.

1,257 citations

Journal ArticleDOI
TL;DR: In this article, the authors present measurements of the Hubble diagram for 103 Type Ia supernovae with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey.
Abstract: We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. Within the framework of the MLCS2K2 light-curve fitting method, we use the SDSS-II SN sample to infer the mean reddening parameter for host galaxies, RV = 2.18 ± 0.14stat ± 0.48syst, and find that the intrinsic distribution of host-galaxy extinction is well fitted by an exponential function, P(AV ) = exp(–AV /τV), with τV = 0.334 ± 0.088 mag. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey (SNLS), the Hubble Space Telescope (HST), and a compilation of Nearby SN Ia measurements. A new feature in our analysis is the use of detailed Monte Carlo simulations of all surveys to account for selection biases, including those from spectroscopic targeting. Combining the SN Hubble diagram with measurements of baryon acoustic oscillations from the SDSS Luminous Red Galaxy sample and with cosmic microwave background temperature anisotropy measurements from the Wilkinson Microwave Anisotropy Probe, we estimate the cosmological parameters w and ΩM, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. We also consider constraints upon ΩM and ΩΛ for a cosmological constant model (ΛCDM) with w = –1 and non-zero spatial curvature. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = –0.76 ± 0.07(stat) ± 0.11(syst), ΩM = 0.307 ± 0.019(stat) ± 0.023(syst) using MLCS2K2 and w = –0.96 ± 0.06(stat) ± 0.12(syst), ΩM = 0.265 ± 0.016(stat) ± 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST SNe. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame U band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (β). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties: w = –0.92 ± 0.13(stat)+0.10 –0.33(syst) for MLCS2K2 and w = –0.92 ± 0.11(stat)+0.07 –0.15 (syst) for SALT-II.

754 citations

Journal ArticleDOI
TL;DR: In this article, the cosmological parameters of Type Ia supernovae with redshifts 0.04 < z < 0.42 were estimated using the SALT-II fitter.
Abstract: We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshift "desert" between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame $U$-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.

675 citations

Journal ArticleDOI
Joshua A. Frieman1, Joshua A. Frieman2, Bruce A. Bassett3, Andrew C. Becker4, Changsu Choi5, D. Cinabro6, F. DeJongh1, Darren L. DePoy7, Ben Dilday2, Mamoru Doi8, Peter M. Garnavich9, Craig J. Hogan4, Jon A. Holtzman10, Myungshin Im5, Saurabh Jha11, Richard Kessler2, Kohki Konishi8, Hubert Lampeitl12, John Marriner1, Jennifer L. Marshall7, D. McGinnis1, G. Miknaitis1, Robert C. Nichol13, J. L. Prieto7, Adam G. Riess12, Adam G. Riess14, Michael Richmond15, Roger W. Romani11, Masao Sako16, Donald P. Schneider17, Mathew Smith13, Naohiro Takanashi8, Kouichi Tokita8, Kurt van der Heyden, Naoki Yasuda8, Chen Zheng11, Jennifer K. Adelman-McCarthy1, James Annis1, Roberto J. Assef7, J. C. Barentine18, J. C. Barentine19, Ralf Bender20, Roger Blandford11, William N. Boroski1, Malcolm N. Bremer21, Howard Brewington19, Chris A. Collins22, Arlin P. S. Crotts23, Jack Dembicky19, Jason D. Eastman7, Alastair C. Edge24, Edmond Edmondson13, Edward C. Elson, Michael E. Eyler25, Alexei V. Filippenko26, Ryan J. Foley26, Stephan Frank7, Ariel Goobar27, Tina Gueth10, James E. Gunn28, Michael Harvanek29, Michael Harvanek19, Ulrich Hopp20, Yutaka Ihara8, Želko Ivezić4, Steven M. Kahn11, Jared Kaplan30, Stephen B. H. Kent2, Stephen B. H. Kent1, William Ketzeback19, S. J. Kleinman19, S. J. Kleinman31, Wolfram Kollatschny32, Richard G. Kron2, Jurek Krzesinski19, D. Lamenti33, Giorgos Leloudas34, Huan Lin1, Dan Long19, John R. Lucey24, Robert H. Lupton28, Elena Malanushenko19, Viktor Malanushenko19, Russet McMillan19, Javier Méndez35, Christopher W. Morgan25, Christopher W. Morgan7, Tomoki Morokuma8, Atsuko Nitta19, Linda Ostman27, Kaike Pan19, Constance M. Rockosi36, A. Kathy Romer37, Pilar Ruiz-Lapuente35, G. Saurage19, K. Schlesinger7, Stephanie A. Snedden19, Jesper Sollerman27, Jesper Sollerman34, Chris Stoughton1, Maximilian Stritzinger34, Mark SubbaRao2, Douglas L. Tucker1, Petri Väisänen, Linda C. Watson7, S. Watters19, J. Craig Wheeler18, Brian Yanny1, Donald G. York2 
TL;DR: The Sloan Digital Sky Survey-II (SDSS-II) as mentioned in this paper is a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band imaging over an area of 300 sq. deg.
Abstract: The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

486 citations

Journal ArticleDOI
Joshua A. Frieman, Bruce A. Bassett, Andrew C. Becker, Changsu Choi, D. Cinabro, F. DeJongh, Darren L. DePoy, B. Dilday, Mamoru Doi, Peter M. Garnavich, Craig J. Hogan, Jon A. Holtzman, Myungshin Im, Saurabh Jha, Richard Kessler, Kohki Konishi, H. Lampeitl, J. P. Marriner, Jennifer L. Marshall, D. McGinnis, G. Miknaitis, Robert C. Nichol, J. L. Prieto, Adam G. Riess, Michael Richmond, Roger W. Romani, Masao Sako, Donald P. Schneider, Mathew Smith, Naohiro Takanashi, Kouichi Tokita, K. van der Heyden, Naoki Yasuda, Chen Zheng, Jennifer K. Adelman-McCarthy, J. Annis, Roberto J. Assef, J. C. Barentine, Ralf Bender, Roger Blandford, William N. Boroski, M. N. Bremer, Howard Brewington, Chris A. Collins, Arlin P. S. Crotts, Jack Dembicky, Jason D. Eastman, Alastair C. Edge, E. M. Edmondson, Edward C. Elson, Michael E. Eyler, Alexei V. Filippenko, Ryan J. Foley, Stephan Frank, Ariel Goobar, T. Gueth, James E. Gunn, Mike Harvanek, Ulrich Hopp, Yutaka Ihara, Ž. Ivezić, Steven M. Kahn, Jared Kaplan, Steve Kent, William Ketzeback, S. J. Kleinman, Wolfram Kollatschny, Richard G. Kron, J. Krzesinski, D. Lamenti, Giorgos Leloudas, Huan Lin, Dan Long, John R. Lucey, Robert H. Lupton, E. Malanushenko, V. Malanushenko, R. J. McMillan, Javier Méndez, Christopher W. Morgan, Tomoki Morokuma, Atsuko Nitta, L. Ostman, Kaike Pan, C. M. Rockosi, A. K. Romer, P. Ruiz-Lapuente, G. Saurage, Katharine J. Schlesinger, S. A. Snedden, Jesper Sollerman, Christopher Stoughton, Maximilian Stritzinger, M. Subbarao, Douglas L. Tucker, Petri Väisänen, Linda C. Watson, S. Watters, John C Wheeler, B. Yanny, Donald G. York 
TL;DR: The Sloan Digital Sky Survey-II (SDSS-II) as discussed by the authors is a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band imaging over an area of 300 sq. deg.
Abstract: The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.

414 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations

Journal ArticleDOI
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11,663 deg^2 of imaging data, with most of the ~2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry on a 120° long, 2°.5 wide stripe along the celestial equator in the Southern Galactic Cap, with some regions covered by as many as 90 individual imaging runs. We include a co-addition of the best of these data, going roughly 2 mag fainter than the main survey over 250 deg^2. The survey has completed spectroscopy over 9380 deg^2; the spectroscopy is now complete over a large contiguous area of the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog, reducing the rms statistical errors at the bright end to 45 milliarcseconds per coordinate. We further quantify a systematic error in bright galaxy photometry due to poor sky determination; this problem is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.

5,665 citations