scispace - formally typeset
Search or ask a question
Author

Ulrich Meyer

Other affiliations: Max Planck Society
Bio: Ulrich Meyer is an academic researcher from Goethe University Frankfurt. The author has contributed to research in topics: Shortest path problem & Time complexity. The author has an hindex of 27, co-authored 137 publications receiving 3036 citations. Previous affiliations of Ulrich Meyer include Max Planck Society.


Papers
More filters
Book ChapterDOI
10 Sep 2012
TL;DR: It is shown that the hierarchical approach is frequently capable of producing surprisingly good diameter approximations in shorter time than BFS, and provides theoretical and practical insights into worst-case input classes.
Abstract: Computing diameters of huge graphs is a key challenge in complex network analysis. As long as the graphs fit into main memory, diameters can be efficiently approximated (and frequently even exactly determined) using heuristics that apply a limited number of BFS traversals. If the input graphs have to be kept and processed on external storage, even a single BFS run may cause an unacceptable amount of time-consuming I/O-operations. Meyer [17] proposed the first parameterized diameter approximation algorithm with fewer I/Os than that required for exact BFS traversal. In this paper we derive hierarchical extensions of this randomized approach and experimentally compare their trade-offs between actually achieved running times and approximation ratios. We show that the hierarchical approach is frequently capable of producing surprisingly good diameter approximations in shorter time than BFS. We also provide theoretical and practical insights into worst-case input classes.

8 citations

Posted Content
TL;DR: The first implementation of an efficient GIRG generator running in expected linear time is presented, and an efficient algorithm is provided to determine the non-trivial dependency between the average degree of the resulting graph and the input parameters of the GIRGs model.
Abstract: Hyperbolic random graphs (HRG) and geometric inhomogeneous random graphs (GIRG) are two similar generative network models that were designed to resemble complex real world networks. In particular, they have a power-law degree distribution with controllable exponent $\beta$, and high clustering that can be controlled via the temperature $T$. We present the first implementation of an efficient GIRG generator running in expected linear time. Besides varying temperatures, it also supports underlying geometries of higher dimensions. It is capable of generating graphs with ten million edges in under a second on commodity hardware. The algorithm can be adapted to HRGs. Our resulting implementation is the fastest sequential HRG generator, despite the fact that we support non-zero temperatures. Though non-zero temperatures are crucial for many applications, most existing generators are restricted to $T = 0$. Our generators support parallelization, although this is not the focus of this paper. We note that our generators draw from the correct probability distribution, i.e., they involve no approximation. Besides the generators themselves, we also provide an efficient algorithm to determine the non-trivial dependency between the average degree of the resulting graph and the input parameters of the GIRG model. This makes it possible to specify the expected average degree as input. Moreover, we investigate the differences between HRGs and GIRGs, shedding new light on the nature of the relation between the two models. Although HRGs represent, in a certain sense, a special case of the GIRG model, we find that a straight-forward inclusion does not hold in practice. However, the difference is negligible for most use cases.

8 citations

Book
01 Dec 1999
TL;DR: A randomized algorithm is presented which solves optimally the I/O-complexity of computing the trapezoidal decomposition deened by a set of N line segments in the plane and also solves the segment intersections problem requiring the same number of I/Os and internal operations.
Abstract: We investigate the I/O-complexity of computing the trapezoidal decomposition deened by a set of N line segments in the plane. We present a randomized algorithm which solves optimally this problem requiring O(N B log M=B N B + K B) expected I/O operations, where K is the number of pairwise intersections, M is the size of available internal memory and B is the size of the block transfer. The proposed algorithm requires an optimal expected number of internal operations. As a by-product, the algorithm also solves the segment intersections problem requiring the same number of I/Os and internal operations.

8 citations

Journal ArticleDOI
TL;DR: Efficient algorithms to analyze the cycle structure of the graph induced by the state transition function of the A5/1 stream cipher used in GSM mobile phones are described and structural results for the full graph are presented for the first time.
Abstract: We describe efficient algorithms to analyze the cycle structure of the graph induced by the state transition function of the A5/1 stream cipher used in GSM mobile phones and report on the results of the implementation. The analysis is performed in five steps utilizing HPC clusters, GPGPU and external memory computation. A great reduction of this huge state transition graph of 2^64 nodes is achieved by focusing on special nodes in the first step and removing leaf nodes that can be detected with limited effort in the second step. This step does not break the overall structure of the graph and keeps at least one node on every cycle. In the third step the nodes of the reduced graph are connected by weighted edges. Since the number of nodes is still huge an efficient bitslice approach is presented that is implemented with NVIDIA's CUDA framework and executed on several GPUs concurrently. An external memory algorithm based on the STXXL library and its parallel pipelining feature further reduces the graph in the fourth step. The result is a graph containing only cycles that can be further analyzed in internal memory to count the number and size of the cycles. This full analysis which previously would take months can now be completed within a few days and allows to present structural results for the full graph for the first time. The structure of the A5/1 graph deviates notably from the theoretical results for random mappings.

8 citations

Journal ArticleDOI
TL;DR: The processing units in the algorithm forward the received packets always in the same way, so that the algorithm achieves almost the same performance with patterns that might be hardwired.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Proceedings ArticleDOI
06 Jun 2010
TL;DR: A model for processing large graphs that has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier.
Abstract: Many practical computing problems concern large graphs. Standard examples include the Web graph and various social networks. The scale of these graphs - in some cases billions of vertices, trillions of edges - poses challenges to their efficient processing. In this paper we present a computational model suitable for this task. Programs are expressed as a sequence of iterations, in each of which a vertex can receive messages sent in the previous iteration, send messages to other vertices, and modify its own state and that of its outgoing edges or mutate graph topology. This vertex-centric approach is flexible enough to express a broad set of algorithms. The model has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier. Distribution-related details are hidden behind an abstract API. The result is a framework for processing large graphs that is expressive and easy to program.

3,840 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations

Book
02 Jan 1991

1,377 citations