scispace - formally typeset
Search or ask a question
Author

Ulrich Schollwöck

Bio: Ulrich Schollwöck is an academic researcher from Ludwig Maximilian University of Munich. The author has contributed to research in topics: Density matrix renormalization group & Hubbard model. The author has an hindex of 40, co-authored 119 publications receiving 11665 citations. Previous affiliations of Ulrich Schollwöck include Max Planck Society & RWTH Aachen University.


Papers
More filters
Journal ArticleDOI
TL;DR: The density matrix renormalization group method (DMRG) has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems as mentioned in this paper.

2,940 citations

Journal ArticleDOI
TL;DR: The density-matrix renormalization group (DMRG) as mentioned in this paper is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription.
Abstract: The density-matrix renormalization group (DMRG) is a numerical algorithm for the efficient truncation of the Hilbert space of low-dimensional strongly correlated quantum systems based on a rather general decimation prescription. This algorithm has achieved unprecedented precision in the description of one-dimensional quantum systems. It has therefore quickly become the method of choice for numerical studies of such systems. Its applications to the calculation of static, dynamic, and thermodynamic quantities in these systems are reviewed here. The potential of DMRG applications in the fields of two-dimensional quantum systems, quantum chemistry, three-dimensional small grains, nuclear physics, equilibrium and nonequilibrium statistical physics, and time-dependent phenomena is also discussed. This review additionally considers the theoretical foundations of the method, examining its relationship to matrix-product states and the quantum information content of the density matrices generated by the DMRG.

2,341 citations

Journal ArticleDOI
TL;DR: In this article, a study combining an experimental approach for monitoring the dynamics of strongly correlated cold atoms with theoretical analysis provides quantitative insights into the problem of quantum many-body systems relax from an initial non-equilibrium state.
Abstract: How quantum many-body systems relax from an initial non-equilibrium state is one of the outstanding problems in quantum statistical physics. A study combining an experimental approach for monitoring the dynamics of strongly correlated cold atoms with theoretical analysis now provides quantitative insights into the problem.

922 citations

Journal ArticleDOI
TL;DR: In this article, the authors translate the TEBD algorithm into the language of matrix product states in order to both highlight and exploit its resemblances to the widely used density-matrix renormalization-group (DMRG) algorithms.
Abstract: An algorithm for the simulation of the evolution of slightly entangled quantum states has been recently proposed as a tool to study time-dependent phenomena in one-dimensional quantum systems. Its key feature is a time-evolving block-decimation (TEBD) procedure to identify and dynamically update the relevant, conveniently small, subregion of the otherwise exponentially large Hilbert space. Potential applications of the TEBD algorithm are the simulation of time-dependent Hamiltonians, transport in quantum systems far from equilibrium and dissipative quantum mechanics. In this paper we translate the TEBD algorithm into the language of matrix product states in order to both highlight and exploit its resemblances to the widely used density-matrix renormalization-group (DMRG) algorithms. The TEBD algorithm, being based on updating a matrix product state in time, is very accessible to the DMRG community and it can be enhanced by using well-known DMRG techniques, for instance in the event of good quantum numbers. More importantly, we show how it can be simply incorporated into existing DMRG implementations to produce a remarkably effective and versatile 'adaptive time-dependent DMRG' variant, that we also test and compare to previous proposals.

888 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
TL;DR: This paper gives a detailed exposition of current DMRG thinking in the MPS language in order to make the advisable implementation of the family of D MRG algorithms in exclusively MPS terms transparent.
Abstract: The density-matrix renormalization group method (DMRG) has established itself over the last decade as the leading method for the simulation of the statics and dynamics of one-dimensional strongly correlated quantum lattice systems. In the further development of the method, the realization that DMRG operates on a highly interesting class of quantum states, so-called matrix product states (MPS), has allowed a much deeper understanding of the inner structure of the DMRG method, its further potential and its limitations. In this paper, I want to give a detailed exposition of current DMRG thinking in the MPS language in order to make the advisable implementation of the family of DMRG algorithms in exclusively MPS terms transparent. I then move on to discuss some directions of potentially fruitful further algorithmic development: while DMRG is a very mature method by now, I still see potential for further improvements, as exemplified by a number of recently introduced algorithms.

2,977 citations