scispace - formally typeset
Search or ask a question
Author

Umapada Pal

Bio: Umapada Pal is an academic researcher from Benemérita Universidad Autónoma de Puebla. The author has contributed to research in topics: Nanoparticle & Computer science. The author has an hindex of 49, co-authored 274 publications receiving 10185 citations. Previous affiliations of Umapada Pal include Universidad Autónoma del Estado de México & Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europiumcontent in the reaction solution, and crystallinity and crystallite size of the titania particles decreased gradually.
Abstract: Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions.

2,378 citations

Journal Article
TL;DR: In this paper, optical properties of unsupported or powdered nanostructures are frequently determined through UV-Vis absorption spectroscopy of their dispersed solutio-graphs.
Abstract: Resumen en: Optical properties of un-supported or powdered nanostructures are frequently determined through UV-Vis absorption spectroscopy of their dispersed solutio...

676 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the possible correlations between defects and photoluminescence spectra in ZnO nanoparticles of sizes ranging from 43 nm to 73 nm in diameter.
Abstract: We studied the possible correlations between defects and photoluminescence spectra in ZnO nanoparticles of sizes ranging from 43 nm to 73 nm in diameter. The defects and impurity contents were characterized by Fourier-transform infrared (FTIR) spectroscopy. The results show fewer carboxylate and hydroxyl impurities for particles of larger sizes. No significant variation in oxygen vacancy content was found among samples. Annealing in vacuum at 300 °C significantly reduces the carboxylate and hydroxyl impurities in the samples. The total luminescence intensity (UV + visible) increases as the particle size grows for both the unannealed and annealed samples. This suggests that both types of luminescence are subject to non-radiative quenching by near surface defect centers, possibly carboxylate and hydroxyl impurities. There may be quenching due to intrinsic lattice defects too. It is found that annealing in vacuum enhances the visible luminescence both absolutely and relative to the UV exciton luminescence. In addition to the 2.5 eV green luminescence peak, a peak centered at 2.8 eV can also be resolved, espeically for the 43 nm sample. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

400 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of Ag doping on the crystallinity and optical properties of zinc oxide (ZnO) nanoparticles have been studied by x-ray diffraction, diffuse reflectance spectroscopy, micro-Raman, and photoluminescence spectrography.
Abstract: Effects of Ag doping on the crystallinity and optical properties of zinc oxide (ZnO) nanoparticles have been studied by x-ray diffraction, diffuse reflectance spectroscopy, micro-Raman, and photoluminescence spectroscopy. It has been observed that while Ag-doping at low concentration improves the optoelectronic properties of ZnO nanostructures, Ag-doping at high concentrations drastically modify the emission behavior and lattice vibrational characteristics of the nanostructures. High Ag content in ZnO nanostructures causes lattice deformation, induces silent vibrational modes in Raman spectra, and reduces excitonic UV emission due to concentration quenching.

269 citations

Journal ArticleDOI
TL;DR: High-resolution electron microscopy revealed the well crystalline nature of all the ZnO nanostructures with preferential growth along the [002] direction for linear structures, which could be reduced by air annealing at 250 degrees C.
Abstract: ZnO nanostructures of different morphologies were grown in a controlled manner using a simple low-temperature hydrothermal technique. Controlling the content of ethylenediamine (soft surfactant) and the pH of the reaction mixture, nanoparticles, nanorods, and flowerlike ZnO structures could be synthesized at temperatures 80-100 degrees C with excellent reproducibility. High-resolution electron microscopy revealed the well crystalline nature of all the nanostructures with preferential growth along the [002] direction for linear structures. Photoluminescence spectra of the as-grown nanostructures revealed oxygen-vacancy-related defects in them, which could be reduced by air annealing at 250 degrees C. Possible mechanisms for the variation of morphology with synthesis parameters are discussed.

269 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed overview of the synthesis, properties and applications of nanoparticles exist in different forms NPs are tiny materials having size ranges from 1 to 100nm They can be classified into different classes based on their properties, shapes or sizes.

3,282 citations

Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations

Journal ArticleDOI
03 Mar 2008-Small
TL;DR: In this paper, an overall picture of shaped metal particles is presented, with a particular focus on solution-based syntheses for the noble metals, emphasizing key factors that result in anisotropic, nonspherical growth such as crystallographically selective adsorbates and seeding processes.
Abstract: Colloidal metal nanoparticles are emerging as key materials for catalysis, plasmonics, sensing, and spectroscopy. Within these applications, control of nanoparticle shape lends increasing functionality and selectivity. Shape-controlled nanocrystals possess well-defined surfaces and morphologies because their nucleation and growth are controlled at the atomic level. An overall picture of shaped metal particles is presented, with a particular focus on solution-based syntheses for the noble metals. General strategies for synthetic control are discussed, emphasizing key factors that result in anisotropic, nonspherical growth such as crystallographically selective adsorbates and seeding processes.

2,203 citations

01 Jan 2016

1,664 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications is presented.
Abstract: This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined with TiO2, produce a core–shell structure that reduces the combination rate. The limitations of ZnO-based DSCs are also discussed and several possible methods are proposed so as to expand the knowledge of ZnO to TiO2, motivating further improvement in the power-conversion efficiency of DSCs.

1,627 citations