scispace - formally typeset
Search or ask a question
Author

Umit Hakan Yildiz

Bio: Umit Hakan Yildiz is an academic researcher from İzmir Institute of Technology. The author has contributed to research in topics: Surface plasmon resonance & Nucleic acid. The author has an hindex of 14, co-authored 48 publications receiving 672 citations. Previous affiliations of Umit Hakan Yildiz include Max Planck Society & Nanyang Technological University.


Papers
More filters
Journal ArticleDOI
TL;DR: A portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli and Staphylococcus aureus rapidly and could potentially be applicable to capture and detect other pathogens at the POC and primary care settings.
Abstract: Timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods, such as enzyme linked immunosorbent assay (ELISA), culturing or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments, which are not adaptable to point-of-care (POC) needs at resource-constrained as well as primary care settings. Therefore, there is an unmet need to develop simple, rapid, and accurate methods for detection of pathogens at the POC. Here, we present a portable, multiplex, inexpensive microfluidic-integrated surface plasmon resonance (SPR) platform that detects and quantifies bacteria, i.e., Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) rapidly. The platform presented reliable capture and detection of E. coli at concentrations ranging from ~10(5) to 3.2 × 10(7) CFUs/mL in phosphate buffered saline (PBS) and peritoneal dialysis (PD) fluid. The multiplexing and specificity capability of the platform was also tested with S. aureus samples. The presented platform technology could potentially be applicable to capture and detect other pathogens at the POC and primary care settings.

169 citations

Journal ArticleDOI
TL;DR: This letter demonstrates a biosensing platform for naked eye detection of miRNA, fabricated using a poly(vinylidene fluoride) thin paper impregnated with positively charged poly(3-alkoxy-4-methylthiophene) as luminescent reporters.
Abstract: This letter demonstrates a biosensing platform for naked eye detection of miRNA, fabricated using a poly(vinylidene fluoride) thin paper impregnated with positively charged poly(3-alkoxy-4-methylthiophene) as luminescent reporters. The miRNA assay is based on the formation of a duplex and a triplex species between the “reporter and miRNA” and “reporter and miRNA-peptide nucleic acid (PNA) hybrid”, which yields two significantly different optical signals, thereby facilitating naked eye detection. This letter illustrates the successful validation of the proposed methodology via a mir21 assay (miRNA sequence associated with lung cancer). Furthermore, this facile platform enables rapid, sensitive, and selective detection of miRNA, at clinically relevant concentration levels as well as single base pair mismatch, without requiring complex and expensive instrumentation.

83 citations

Journal ArticleDOI
TL;DR: The nanoplasmonic electrical field-enhanced resonating device (NE2RD) is demonstrated, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses.
Abstract: Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In practice, these barriers prevent broad applications in clinics and at patients’ homes. Here, we demonstrate the nanoplasmonic electrical field-enhanced resonating device (NE2RD), which addresses all these impediments on a single platform. The NE2RD employs an immunodetection assay to capture biotargets, and precisely measures spectral color changes by their wavelength and extinction intensity shifts in nanoparticles without prior sample labeling or preprocessing. We present through multiple examples, a label-free, quantitative, portable, multitarget platform by rapidly detecting various protein biomarkers, drugs, protein allergens, bacteria, eukaryotic cells, and distinct viruses. The linear dynamic range of NE2RD is five orders of magnitude broader than ELISA, with a sensitivity down to 400 fg/mL This range and sensitivity are achieved by self-assembling gold nanoparticles to generate hot spots on a 3D-oriented substrate for ultrasensitive measurements. We demonstrate that this precise platform handles multiple clinical samples such as whole blood, serum, and saliva without sample preprocessing under diverse conditions of temperature, pH, and ionic strength. The NE2RD’s broad dynamic range, detection limit, and portability integrated with a disposable fluidic chip have broad applications, potentially enabling the transition toward precision medicine at the point-of-care or primary care settings and at patients’ homes.

54 citations

Journal ArticleDOI
TL;DR: A prototypical handheld phosGene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed and involves a rapid response period suitable for issuing early warnings during emergency situations.
Abstract: A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations.

48 citations

Journal ArticleDOI
TL;DR: It is concluded that it is the interplay of electrostatics and component architectures that directs the structure formation of DNA complexes through the influence of concentration, added salt, and preparation method.

44 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review includes challenges to scaling up, commercialisation and regulatory issues, and the factors which limit paper-based microfluidic devices to become real world products and future directions are also identified.
Abstract: Dipstick and lateral-flow formats have dominated rapid diagnostics over the last three decades. These formats gained popularity in the consumer markets due to their compactness, portability and facile interpretation without external instrumentation. However, lack of quantitation in measurements has challenged the demand of existing assay formats in consumer markets. Recently, paper-based microfluidics has emerged as a multiplexable point-of-care platform which might transcend the capabilities of existing assays in resource-limited settings. However, paper-based microfluidics can enable fluid handling and quantitative analysis for potential applications in healthcare, veterinary medicine, environmental monitoring and food safety. Currently, in its early development stages, paper-based microfluidics is considered a low-cost, lightweight, and disposable technology. The aim of this review is to discuss: (1) fabrication of paper-based microfluidic devices, (2) functionalisation of microfluidic components to increase the capabilities and the performance, (3) introduction of existing detection techniques to the paper platform and (4) exploration of extracting quantitative readouts via handheld devices and camera phones. Additionally, this review includes challenges to scaling up, commercialisation and regulatory issues. The factors which limit paper-based microfluidic devices to become real world products and future directions are also identified.

1,658 citations

Journal ArticleDOI
TL;DR: Transparent conductors (TCs) have a multitude of applications for solar energy utilization and for energy savings, especially in buildings as discussed by the authors, which leads naturally to considerations of spectral selectivity, angular selectivity, and temporal variability of TCs, as covered in three subsequent sections.

1,471 citations

Posted Content
TL;DR: In this article, a novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized.
Abstract: A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry. Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

649 citations

Journal ArticleDOI
TL;DR: 3D cellculture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models.
Abstract: Cell culture is an important and necessary process in drug discovery, cancer research, as well as stem cell study. Most cells are currently cultured using two-dimensional (2D) methods but new and improved methods that implement three-dimensional (3D) cell culturing techniques suggest compelling evidence that much more advanced experiments can be performed yielding valuable insights. When performing 3D cell culture experiments, the cell environment can be manipulated to mimic that of a cell in vivo and provide more accurate data about cell-to-cell interactions, tumor characteristics, drug discovery, metabolic profiling, stem cell research, and other types of diseases. Scaffold based techniques such as hydrogel-based support, polymeric hard material-based support, hydrophilic glass fiber, and organoids are employed, and each provide their own advantages and applications. Likewise, there are also scaffold free techniques used such as hanging drop microplates, magnetic levitation, and spheroid microplates with ultra-low attachment coating. 3D cell culture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models. The present review compares 2D cell culture to 3D cell culture, provides the details surrounding the different 3D culture techniques, as well as focuses on the present and future applications of 3D cell culture.

634 citations

Journal ArticleDOI
TL;DR: Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores.
Abstract: There is great need for stand-alone luminescence-based chemosensors that exemplify selectivity, sensitivity, and applicability and that overcome the challenges that arise from complex, real-world media. Discussed herein are recent developments toward these goals in the field of supramolecular luminescent chemosensors, including macrocycles, polymers, and nanomaterials. Specific focus is placed on the development of new macrocycle hosts since 2010, coupled with considerations of the underlying principles of supramolecular chemistry as well as analytes of interest and common luminophores. State-of-the-art developments in the fields of polymer and nanomaterial sensors are also examined, and some remaining unsolved challenges in the area of chemosensors are discussed.

463 citations