scispace - formally typeset
Search or ask a question
Author

Un Ju Jung

Bio: Un Ju Jung is an academic researcher from Pukyong National University. The author has contributed to research in topics: Insulin resistance & Adipose tissue. The author has an hindex of 39, co-authored 98 publications receiving 5696 citations. Previous affiliations of Un Ju Jung include Kyungpook National University & Naver Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the role of several adipokines associated with obesity and the potential impact on obesity-related metabolic diseases.
Abstract: Accumulating evidence indicates that obesity is closely associated with an increased risk of metabolic diseases such as insulin resistance, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease. Obesity results from an imbalance between food intake and energy expenditure, which leads to an excessive accumulation of adipose tissue. Adipose tissue is now recognized not only as a main site of storage of excess energy derived from food intake but also as an endocrine organ. The expansion of adipose tissue produces a number of bioactive substances, known as adipocytokines or adipokines, which trigger chronic low-grade inflammation and interact with a range of processes in many different organs. Although the precise mechanisms are still unclear, dysregulated production or secretion of these adipokines caused by excess adipose tissue and adipose tissue dysfunction can contribute to the development of obesity-related metabolic diseases. In this review, we focus on the role of several adipokines associated with obesity and the potential impact on obesity-related metabolic diseases. Multiple lines evidence provides valuable insights into the roles of adipokines in the development of obesity and its metabolic complications. Further research is still required to fully understand the mechanisms underlying the metabolic actions of a few newly identified adipokines.

1,420 citations

Journal ArticleDOI
TL;DR: The current results suggest that hesperidin and naringin are beneficial for improving hyperlipidemia and hyperglycemia in type-2 diabetic animals by partly regulating the fatty acid and cholesterol metabolism and affecting the gene expression of glucose-regulating enzymes.

390 citations

Journal ArticleDOI
TL;DR: The current results suggest that hesperidin and naringin both play important roles in preventing the progression of hyperglycemia, partly by increasing hepatic glycolysis and glycogen concentration and/or by lowering hepatic gluconeogenesis.
Abstract: Dietary antioxidant compounds such as bioflavonoids may offer some protection against the early stage of diabetes mellitus and the development of complications. We investigated the effect of citrus bioflavonoids on blood glucose level, hepatic glucose-regulating enzymes activities, hepatic glycogen concentration, and plasma insulin levels, and assessed the relations between plasma leptin and body weight, blood glucose, and plasma insulin. Male C57BL/KsJ-db/db mice (db/db mice, 5 wk old), an animal model for type 2 diabetes, were fed a nonpurified diet for 2 wk and then were fed an AIN-76 control diet or the control diet supplemented with hesperidin (0.2 g/kg diet) or naringin (0.2 g/kg diet). Hesperidin and naringin supplementation significantly reduced blood glucose compared with the control group. Hepatic glucokinase activity and glycogen concentration were both significantly elevated in the hesperidin- and the naringin-supplemented groups compared with the control group. Naringin also markedly lowered the activity of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinase compared with the control group. Plasma insulin, C-peptide, and leptin levels in the db/db mice from the 2 bioflavonoid-supplemented groups were significantly higher than those of the control group. Furthermore, plasma leptin was positively correlated with plasma insulin level (r = 0.578, P < 0.01) and body weight (r = 0.541, P < 0.05), and was inversely correlated with the blood glucose level (r = -0.46, P < 0.05). The current results suggest that hesperidin and naringin both play important roles in preventing the progression of hyperglycemia, partly by increasing hepatic glycolysis and glycogen concentration and/or by lowering hepatic gluconeogenesis.

337 citations

Journal ArticleDOI
TL;DR: It is suggested that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.
Abstract: We investigated the effect of curcumin on insulin resistance and glucose homeostasis in male C57BL/KsJ-db/db mice and their age-matched lean non-diabetic db/+ mice. Both db/+ and db/db mice were fed with or without curcumin (0.02%, wt/wt) for 6 wks. Curcumin significantly lowered blood glucose and HbA 1c levels, and it suppressed body weight loss in db/db mice. Curcumin improved homeostasis model assessment of insulin resistance and glucose tolerance, and elevated the plasma insulin level in db/db mice. Hepatic glucokinase activity was significantly higher in the curcumin-supplemented db/db group than in the db/db group, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities were significantly lower. In db/db mice, curcumin significantly lowered the hepatic activities of fatty acid synthase, beta-oxidation, 3-hydroxy-3-methylglutaryl coenzyme reductase, and acyl-CoA: cholesterol acyltransferase. Curcumin significantly lowered plasma free fatty acid, cholesterol, and triglyceride concentrations and increased the hepatic glycogen and skeletal muscle lipoprotein lipase in db/db mice. Curcumin normalized erythrocyte and hepatic antioxidant enzyme activities (superoxide dismutase, catalase, gluthathione peroxidase) in db/db mice that resulted in a significant reduction in lipid peroxidation. However, curcumin showed no effect on the blood glucose, plasma insulin, and glucose regulating enzyme activities in db/+ mice. These results suggest that curcumin seemed to be a potential glucose-lowering agent and antioxidant in type 2 diabetic db/db mice, but had no affect in non-diabetic db/+ mice.

289 citations

Journal ArticleDOI
TL;DR: The results indicate that caffeic acid exhibits a significant potential as an antidiabetic agent by suppressing a progression of type 2 diabetic states that is suggested by an attenuation of hepatic glucose output and enhancement of adipocyte glucose uptake, insulin secretion, and antioxidant capacity.
Abstract: This study investigated the blood glucose-lowering effect and antioxidant capacity of caffeic acid in C57BL/KsJ-db/db mice. Caffeic acid induced a significant reduction of the blood glucose and glycosylated hemoglobin levels than the control group. The plasma insulin, C-peptide, and leptin levels in caffeic acid group were significantly higher than those of the control group, whereas the plasma glucagon level was lower. Increased plasma insulin by caffeic acid was attributable to an antidegenerative effect on the islets. Caffeic acid also markedly increased glucokinase activity and its mRNA expression and glycogen content and simultaneously lowered glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities and their respective mRNA expressions, accompanied by a reduction in the glucose transporter 2 expression in the liver. In contrast to the hepatic glucose transporter 2, adipocyte glucose transporter 4 expression was greater than the control group. In addition, caffeic acid significantly increased superoxide dismutase, catalase, and glutathione peroxidase activities and their respective mRNA levels, while lowering the hydrogen peroxide and thiobarbituric acid reactive substances levels in the erythrocyte and liver of db/db mice. These results indicate that caffeic acid exhibits a significant potential as an antidiabetic agent by suppressing a progression of type 2 diabetic states that is suggested by an attenuation of hepatic glucose output and enhancement of adipocyte glucose uptake, insulin secretion, and antioxidant capacity.

273 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

Journal ArticleDOI
TL;DR: A change in the efficiency of energy expenditure based upon diet is suggested, such that SPA during HFD burns fewer calories compared to SPA on a standard chow diet.

1,444 citations

Journal ArticleDOI
TL;DR: This review focuses on the role of several adipokines associated with obesity and the potential impact on obesity-related metabolic diseases.
Abstract: Accumulating evidence indicates that obesity is closely associated with an increased risk of metabolic diseases such as insulin resistance, type 2 diabetes, dyslipidemia and nonalcoholic fatty liver disease. Obesity results from an imbalance between food intake and energy expenditure, which leads to an excessive accumulation of adipose tissue. Adipose tissue is now recognized not only as a main site of storage of excess energy derived from food intake but also as an endocrine organ. The expansion of adipose tissue produces a number of bioactive substances, known as adipocytokines or adipokines, which trigger chronic low-grade inflammation and interact with a range of processes in many different organs. Although the precise mechanisms are still unclear, dysregulated production or secretion of these adipokines caused by excess adipose tissue and adipose tissue dysfunction can contribute to the development of obesity-related metabolic diseases. In this review, we focus on the role of several adipokines associated with obesity and the potential impact on obesity-related metabolic diseases. Multiple lines evidence provides valuable insights into the roles of adipokines in the development of obesity and its metabolic complications. Further research is still required to fully understand the mechanisms underlying the metabolic actions of a few newly identified adipokines.

1,420 citations