scispace - formally typeset
Search or ask a question
Author

Urban Lendahl

Bio: Urban Lendahl is an academic researcher from Karolinska Institutet. The author has contributed to research in topics: Notch signaling pathway & Nestin. The author has an hindex of 79, co-authored 228 publications receiving 28639 citations. Previous affiliations of Urban Lendahl include University of Hong Kong & Åbo Akademi University.


Papers
More filters
Journal ArticleDOI
23 Feb 1990-Cell
TL;DR: The predicted amino acid sequence of the nestin gene product shows that nestin defines a distinct sixth class of intermediate filament protein, extending a model in which transitions in intermediate filament gene expression reflect major steps in the pathway of neural differentiation.

3,250 citations

Journal ArticleDOI
08 Jan 1999-Cell
TL;DR: Evidence is presented that ependymal cells are neural stem cells and a novel process in the response to central nervous system injury is identified, identified in response to spinal cord injury.

1,948 citations

Journal ArticleDOI
26 Aug 1999-Nature
TL;DR: Evidence is provided that ngn3 acts as pro-endocrine gene and that Notch signalling is critical for the decision between theendocrine and progenitor/exocrine fates in the developing pancreas.
Abstract: The pancreas contains both exocrine and endocrine cells, but the molecular mechanisms controlling the differentiation of these cell types are largely unknown. Despite their endodermal origin, pancreatic endocrine cells share several molecular characteristics with neurons, and, like neurons in the central nervous system, differentiating endocrine cells in the pancreas appear in a scattered fashion within a field of progenitor cells. This indicates that they may be generated by lateral specification through Notch signalling. Here, to test this idea, we analysed pancreas development in mice genetically altered at several steps in the Notch signalling pathway. Mice deficient for Delta-like gene 1 (Dll1) or the intracellular mediator RBP-JK showed accelerated differentiation of pancreatic endocrine cells. A similar phenotype was observed in mice over-expressing neurogenin 3(ngn 3) or the intracellular form of Notch3 (ref. 13) (a repressor of Notch signalling). These data provide evidence that ngn3 acts as pro-endocrine gene and that Notch signalling is critical for the decision between theendocrine and progenitor/exocrine fates in the developing pancreas.

1,185 citations

Journal ArticleDOI
14 Feb 2018-Nature
TL;DR: The transcriptional basis of the gradual phenotypic change along the arteriovenous axis is uncovered and unexpected cell type differences are revealed: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells.
Abstract: Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited Here, using vascular sin

1,151 citations

Journal ArticleDOI
02 Jun 2000-Science
TL;DR: It is shown that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers, demonstrating that an adult neural stem cell has a very broad developmental capacity.
Abstract: The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

1,118 citations


Cited by
More filters
Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: The mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.

8,642 citations

Journal ArticleDOI
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations

Journal ArticleDOI
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations

Journal ArticleDOI
TL;DR: The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues, and the convergence of signalling pathways is essential for EMT.
Abstract: The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial-mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT.

6,036 citations

Journal ArticleDOI
27 Mar 1992-Science
TL;DR: Cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
Abstract: Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.

5,497 citations