scispace - formally typeset
Search or ask a question
Author

Urs A. Muller

Bio: Urs A. Muller is an academic researcher from AT&T. The author has contributed to research in topics: Mobile robot & Robot. The author has an hindex of 21, co-authored 32 publications receiving 5763 citations.

Papers
More filters
Posted Content
TL;DR: A convolutional neural network is trained to map raw pixels from a single front-facing camera directly to steering commands and it is argued that this will eventually lead to better performance and smaller systems.
Abstract: We trained a convolutional neural network (CNN) to map raw pixels from a single front-facing camera directly to steering commands. This end-to-end approach proved surprisingly powerful. With minimum training data from humans the system learns to drive in traffic on local roads with or without lane markings and on highways. It also operates in areas with unclear visual guidance such as in parking lots and on unpaved roads. The system automatically learns internal representations of the necessary processing steps such as detecting useful road features with only the human steering angle as the training signal. We never explicitly trained it to detect, for example, the outline of roads. Compared to explicit decomposition of the problem, such as lane marking detection, path planning, and control, our end-to-end system optimizes all processing steps simultaneously. We argue that this will eventually lead to better performance and smaller systems. Better performance will result because the internal components self-optimize to maximize overall system performance, instead of optimizing human-selected intermediate criteria, e.g., lane detection. Such criteria understandably are selected for ease of human interpretation which doesn't automatically guarantee maximum system performance. Smaller networks are possible because the system learns to solve the problem with the minimal number of processing steps. We used an NVIDIA DevBox and Torch 7 for training and an NVIDIA DRIVE(TM) PX self-driving car computer also running Torch 7 for determining where to drive. The system operates at 30 frames per second (FPS).

3,379 citations

01 Jan 1995
TL;DR: This comparison of several learning algorithms for handwritten digits considers not only raw accuracy, but also rejection, training time, recognition time, and memory requirements.
Abstract: COMPARISON OF LEARNINGALGORITHMS FOR HANDWRITTEN DIGITRECOGNITIONY. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes,J. Denker, H. Drucker, I. Guyon, U. M uller,E. Sackinger, P. Simard, and V. VapnikBell Lab oratories, Holmdel, NJ 07733, USAEmail: yann@research.att.comAbstractThis pap er compares the p erformance of several classi er algorithmson a standard database of handwritten digits. We consider not only rawaccuracy, but also rejection, training time, recognition time, and memoryrequirements.1

633 citations

Proceedings Article
Urs A. Muller, Jan Ben, Eric Cosatto1, Beat Flepp, Yann Le Cun 
05 Dec 2005
TL;DR: A vision-based obstacle avoidance system for off-road mobile robots that is trained from end to end to map raw input images to steering angles and exhibits an excellent ability to detect obstacles and navigate around them in real time at speeds of 2 m/s.
Abstract: We describe a vision-based obstacle avoidance system for off-road mobile robots. The system is trained from end to end to map raw input images to steering angles. It is trained in supervised mode to predict the steering angles provided by a human driver during training runs collected in a wide variety of terrains, weather conditions, lighting conditions, and obstacle types. The robot is a 50cm off-road truck, with two forward-pointing wireless color cameras. A remote computer processes the video and controls the robot via radio. The learning system is a large 6-layer convolutional network whose input is a single left/right pair of unprocessed low-resolution images. The robot exhibits an excellent ability to detect obstacles and navigate around them in real time at speeds of 2 m/s.

538 citations

01 Jan 1995
TL;DR: This paper compares the performance of several classi er algorithms on a standard database of handwritten digits by considering not only raw accuracy, but also training time, recognition time, and memory requirements.
Abstract: This paper compares the performance of several classi er algorithms on a standard database of handwritten digits. We consider not only raw accuracy, but also training time, recognition time, and memory requirements. When available, we report measurements of the fraction of patterns that must be rejected so that the remaining patterns have misclassi cation rates less than a given threshold.

451 citations

Posted Content
TL;DR: A method for determining which elements in the road image most influence PilotNet's steering decision is developed, and results show that PilotNet indeed learns to recognize relevant objects on the road.
Abstract: As part of a complete software stack for autonomous driving, NVIDIA has created a neural-network-based system, known as PilotNet, which outputs steering angles given images of the road ahead. PilotNet is trained using road images paired with the steering angles generated by a human driving a data-collection car. It derives the necessary domain knowledge by observing human drivers. This eliminates the need for human engineers to anticipate what is important in an image and foresee all the necessary rules for safe driving. Road tests demonstrated that PilotNet can successfully perform lane keeping in a wide variety of driving conditions, regardless of whether lane markings are present or not. The goal of the work described here is to explain what PilotNet learns and how it makes its decisions. To this end we developed a method for determining which elements in the road image most influence PilotNet's steering decision. Results show that PilotNet indeed learns to recognize relevant objects on the road. In addition to learning the obvious features such as lane markings, edges of roads, and other cars, PilotNet learns more subtle features that would be hard to anticipate and program by engineers, for example, bushes lining the edge of the road and atypical vehicle classes.

358 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Proceedings ArticleDOI
François Chollet1
21 Jul 2017
TL;DR: This work proposes a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions, and shows that this architecture, dubbed Xception, slightly outperforms Inception V3 on the ImageNet dataset, and significantly outperforms it on a larger image classification dataset.
Abstract: We present an interpretation of Inception modules in convolutional neural networks as being an intermediate step in-between regular convolution and the depthwise separable convolution operation (a depthwise convolution followed by a pointwise convolution). In this light, a depthwise separable convolution can be understood as an Inception module with a maximally large number of towers. This observation leads us to propose a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions. We show that this architecture, dubbed Xception, slightly outperforms Inception V3 on the ImageNet dataset (which Inception V3 was designed for), and significantly outperforms Inception V3 on a larger image classification dataset comprising 350 million images and 17,000 classes. Since the Xception architecture has the same number of parameters as Inception V3, the performance gains are not due to increased capacity but rather to a more efficient use of model parameters.

10,422 citations

Book
01 Jan 2009
TL;DR: The motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer modelssuch as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks are discussed.
Abstract: Can machine learning deliver AI? Theoretical results, inspiration from the brain and cognition, as well as machine learning experiments suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one would need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers, graphical models with many levels of latent variables, or in complicated propositional formulae re-using many sub-formulae. Each level of the architecture represents features at a different level of abstraction, defined as a composition of lower-level features. Searching the parameter space of deep architectures is a difficult task, but new algorithms have been discovered and a new sub-area has emerged in the machine learning community since 2006, following these discoveries. Learning algorithms such as those for Deep Belief Networks and other related unsupervised learning algorithms have recently been proposed to train deep architectures, yielding exciting results and beating the state-of-the-art in certain areas. Learning Deep Architectures for AI discusses the motivations for and principles of learning algorithms for deep architectures. By analyzing and comparing recent results with different learning algorithms for deep architectures, explanations for their success are proposed and discussed, highlighting challenges and suggesting avenues for future explorations in this area.

7,767 citations