scispace - formally typeset
Search or ask a question
Author

Urs Stammbach

Bio: Urs Stammbach is an academic researcher from ETH Zurich. The author has contributed to research in topics: Homology (mathematics) & Cellular homology. The author has an hindex of 10, co-authored 45 publications receiving 1403 citations. Previous affiliations of Urs Stammbach include University of Washington & Cornell University.

Papers
More filters
Book
31 Dec 1971
TL;DR: In this paper, the authors propose an extension of the Kunneth Theorem for Abelian groups, which is based on the notion of double complexes, and they use it to define the (co-)homology of groups.
Abstract: I. Modules.- 1. Modules.- 2. The Group of Homomorphisms.- 3. Sums and Products.- 4. Free and Projective Modules.- 5. Projective Modules over a Principal Ideal Domain.- 6. Dualization, Injective Modules.- 7 Injective Modules over a Principal Ideal Domain.- 8. Cofree Modules.- 9. Essential Extensions.- II. Categories and Functors.- 1. Categories.- 2. Functors.- 3. Duality.- 4. Natural Transformations.- 5. Products and Coproducts Universal Constructions.- 6. Universal Constructions (Continued) Pull-backs and Push-outs.- 7. Adjoint Functors.- 8. Adjoint Functors and Universal Constructions.- 9. Abelian Categories.- 10. Projective, Injective, and Free Objects.- III. Extensions of Modules.- 1. Extensions.- 2. The Functor Ext.- 3. Ext Using Injectives.- 4. Computation of some Ext-Groups.- 5. Two Exact Sequences.- 6. A Theorem of Stein-Serre for Abelian Groups.- 7. The Tensor Product.- 8. The Functor Tor.- IV. Derived Functors.- 1. Complexes.- 2. The Long Exact (Co) Homology Sequence.- 3. Homotopy.- 4. Resolutions.- 5. Derived Functors.- 6. The Two Long Exact Sequences of Derived Functors.- 7. The Functors Extn? Using Projectives.- 8. The Functors % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbWexLMBb50ujbqegm0B % 1jxALjharqqr1ngBPrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY- % Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq % 0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaae % aaeaaakeaadaqdaaqaaGqaaiaa-veacaWF4bGaa8hDaaaadaqhaaWc % baacciGae43MdWeabaGaamOBaaaaaaa!40A3! $$ \overline {Ext} _\Lambda ^n $$ Using Injectives.- 9. Extn and n-Extensions.- 10. Another Characterization of Derived Functors.- 11. The Functor Torn?.- 12. Change of Rings.- V. The Kiinneth Formula.- 1. Double Complexes.- 2. The Kunneth Theorem.- 3. The Dual Kunneth Theorem.- 4. Applications of the Kunneth Formulas.- VI. Cohomology of Groups.- 1. The Group Ring.- 2. Definition of (Co) Homology.- 3. H0, H0.- 4. H1, H1 with Trivial Coefficient Modules.- 5. The Augmentation Ideal, Derivations, and the Semi-Direct Product.- 6. A Short Exact Sequence.- 7. The (Co) Homology of Finite Cyclic Groups.- 8. The 5-Term Exact Sequences.- 9. H2, Hopf's Formula, and the Lower Central Series.- 10. H2 and Extensions.- 11. Relative Projectives and Relative Injectives.- 12. Reduction Theorems.- 13. Resolutions.- 14. The (Co) Homology of a Coproduct.- 15. The Universal Coefficient Theorem and the (Co)Homology of a Product.- 16. Groups and Subgroups.- VII. Cohomology of Lie Algebras.- 1. Lie Algebras and their Universal Enveloping Algebra.- 2. Definition of Cohomology H0, H1.- 3. H2 and Extensions.- 4. A Resolution of the Ground Field K.- 5. Semi-simple Lie Algebras.- 6. The two Whitehead Lemmas.- 7. Appendix : Hubert's Chain-of-Syzygies Theorem.- VIII. Exact Couples and Spectral Sequences.- 1. Exact Couples and Spectral Sequences.- 2. Filtered Differential Objects.- 3. Finite Convergence Conditions for Filtered Chain Complexes.- 4. The Ladder of an Exact Couple.- 5. Limits.- 6. Rees Systems and Filtered Complexes.- 7. The Limit of a Rees System.- 8. Completions of Filtrations.- 9. The Grothendieck Spectral Sequence.- IX. Satellites and Homology.- 1. Projective Classes of Epimorphisms.- 2. ?-Derived Functors.- 3. ?-Satellites.- 4. The Adjoint Theorem and Examples.- 5. Kan Extensions and Homology.- 6. Applications: Homology of Small Categories, Spectral Sequences.- X. Some Applications and Recent Developments.- 1. Homological Algebra and Algebraic Topology.- 2. Nilpotent Groups.- 3. Finiteness Conditions on Groups.- 4. Modular Representation Theory.- 5. Stable and Derived Categories.

975 citations

Book
01 Dec 1973
TL;DR: In this paper, the lower central series was used for the localization of nilpotent groups in the V with Abelian kernel, which is a special case of homology theory.
Abstract: Varieties of groups.- Elements of homology theory.- Extensions in V with Abelian kernel.- The lower central series.- Central extensions.- Localization of nilpotent groups.

109 citations


Cited by
More filters
Book
16 Mar 2009
TL;DR: An Introduction to Homological Algebra as discussed by the authors discusses the origins of algebraic topology and presents the study of homological algebra as a two-stage affair: first, one must learn the language of Ext and Tor and what it describes.
Abstract: An Introduction to Homological Algebra discusses the origins of algebraic topology. It also presents the study of homological algebra as a two-stage affair. First, one must learn the language of Ext and Tor and what it describes. Second, one must be able to compute these things, and often, this involves yet another language: spectral sequences. Homological algebra is an accessible subject to those who wish to learn it, and this book is the author's attempt to make it lovable. This book comprises 11 chapters, with an introductory chapter that focuses on line integrals and independence of path, categories and functors, tensor products, and singular homology. Succeeding chapters discuss Hom and ?; projectives, injectives, and flats; specific rings; extensions of groups; homology; Ext; Tor; son of specific rings; the return of cohomology of groups; and spectral sequences, such as bicomplexes, Kunneth Theorems, and Grothendieck Spectral Sequences. This book will be of interest to practitioners in the field of pure and applied mathematics.

1,897 citations

Reference BookDOI
11 May 2018
TL;DR: In this paper, a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work, is presented and accompanied by complete proofs, where the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category.
Abstract: This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.

1,141 citations

Journal ArticleDOI
TL;DR: Finite element exterior calculus as mentioned in this paper is an approach to the design and understand- ing of finite element discretizations for a wide variety of systems of partial differential equations, which brings to bear tools from differential geometry, algebraic topology, and homological algebra to develop discretiza- tions which are compatible with the geometric, topological and algebraic structures which underlie well-posedness of the PDE problem being solved.
Abstract: Finite element exterior calculus is an approach to the design and understand- ing of finite element discretizations for a wide variety of systems of partial differential equations. This approach brings to bear tools from differential geometry, algebraic topology, and homological algebra to develop discretiza- tions which are compatible with the geometric, topological, and algebraic structures which underlie well-posedness of the PDE problem being solved. In the finite element exterior calculus, many finite element spaces are re- vealed as spaces of piecewise polynomial differential forms. These connect to each other in discrete subcomplexes of elliptic differential complexes, and are also related to the continuous elliptic complex through projections which commute with the complex differential. Applications are made to the finite element discretization of a variety of problems, including the Hodge Lapla- cian, Maxwell's equations, the equations of elasticity, and elliptic eigenvalue problems, and also to preconditioners.

1,044 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce the notion of Leibniz algebras, which are modules over a commutative ring k, equipped with a bilinear map.
Abstract: The homology of Lie algebras is closely related to the cyclic homology of associative algebras [LQ]. In [L] the first author constructed a \"noncommutative\" analog of Lie algebra homology which is, similarly, related to Hochschild homology [C, L]. For a Lie algebra g this new theory is the homology of the complex C,(g) ... ~ ~| g|-+ ... ~1 ~ k, whose boundary map d is given by the formula d(gl|174 = ~ (-1)J(gl@'\"|174174174 \" l

653 citations