scispace - formally typeset
Search or ask a question
Author

Ursula Rothlisberger

Other affiliations: Curtin University, University of Milan, University of Bern  ...read more
Bio: Ursula Rothlisberger is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Density functional theory & Excited state. The author has an hindex of 68, co-authored 322 publications receiving 20418 citations. Previous affiliations of Ursula Rothlisberger include Curtin University & University of Milan.


Papers
More filters
Journal ArticleDOI
TL;DR: A molecularly engineered porphyrin dye is reported, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties.
Abstract: A dye that both maximizes electrolyte compatibility and improves light-harvesting properties has been designed for dye-sensitized solar cells. In cells based on the cobalt(II)/(III) redox mediator, use of the dye resulted in a power-conversion efficiency of 13%, revealing the great potential of porphyrin dyes for future solar cell applications.

3,940 citations

Journal ArticleDOI
05 Apr 2021-Nature
TL;DR: In this paper, the pseudo-halide anion formate (HCOO−) was used to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films.
Abstract: Metal halide perovskites of the general formula ABX3—where A is a monovalent cation such as caesium, methylammonium or formamidinium; B is divalent lead, tin or germanium; and X is a halide anion—have shown great potential as light harvesters for thin-film photovoltaics1–5. Among a large number of compositions investigated, the cubic α-phase of formamidinium lead triiodide (FAPbI3) has emerged as the most promising semiconductor for highly efficient and stable perovskite solar cells6–9, and maximizing the performance of this material in such devices is of vital importance for the perovskite research community. Here we introduce an anion engineering concept that uses the pseudo-halide anion formate (HCOO−) to suppress anion-vacancy defects that are present at grain boundaries and at the surface of the perovskite films and to augment the crystallinity of the films. The resulting solar cell devices attain a power conversion efficiency of 25.6 per cent (certified 25.2 per cent), have long-term operational stability (450 hours) and show intense electroluminescence with external quantum efficiencies of more than 10 per cent. Our findings provide a direct route to eliminate the most abundant and deleterious lattice defects present in metal halide perovskites, providing a facile access to solution-processable films with improved optoelectronic performance. Incorporation of the pseudo-halide anion formate during the fabrication of α-FAPbI3 perovskite films eliminates deleterious iodide vacancies, yielding solar cell devices with a certified power conversion efficiency of 25.21 per cent and long-term operational stability.

1,616 citations

Journal ArticleDOI
TL;DR: In this paper, the optoelectronic properties of mixed A-cation perovskites and the underlying reasons for their excellent performance and high stability were analyzed using first principle computations.
Abstract: ABX3-type organic lead halide perovskites currently attract broad attention as light harvesters for solar cells due to their high power conversion efficiency (PCE). Mixtures of formamidinium (FA) with methylammonium (MA) as A-cations show currently the best performance. Apart from offering better solar light harvesting in the near IR the addition of methylammonium stabilizes the perovskite phase of FAPbI3 which in pure form at room temperature converts to the yellow photovoltaically inactive δ-phase. We observe a similar phenomenon upon adding Cs+ cations to FAPbI3. CsPbI3 and FAPbI3 both form the undesirable yellow phase under ambient condition while the mixture forms the desired black pervoskite. Solar cells employing the composition Cs0.2FA0.8PbI2.84Br0.16 yield high average PCEs of over 17% exhibiting negligible hysteresis and excellent long term stability in ambient air. We elucidate here this remarkable behavior using first principle computations. These show that the remarkable stabilization of the perovskite phase by mixing the A-cations stems from entropic gains and the small internal energy input required for the formation of their solid solution. By contrast, the energy of formation of the delta-phase containing mixed cations is too large to be compensated by this configurational entropy increase. Our calculations reveal for the first time the optoelectronic properties of such mixed A-cation perovskites and the underlying reasons for their excellent performance and high stability.

1,032 citations

Journal ArticleDOI
TL;DR: The computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.
Abstract: CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA(+) rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.

600 citations

Journal ArticleDOI
TL;DR: In this article, a fully Hamiltonian and computationally efficient scheme to include the electrostatic effects due to the classical environment in a Car-Parrinello mixed quantum mechanics/molecular mechanics (QM/MM) method is presented.
Abstract: We present a fully Hamiltonian and computationally efficient scheme to include the electrostatic effects due to the classical environment in a Car–Parrinello mixed quantum Mechanics/molecular mechanics (QM/MM) method. The polarization due to the MM atoms close to the quantum system is described by a Coulombic potential modified at short range. We show that the functional form of this potential has to be chosen carefully in order to obtain the correct interaction properties and to prevent an unphysical escape of the electronic density to the MM atoms (the so-called spill-out effect). The interaction between the QM system and the more distant MM atoms is modeled by a Hamiltonian term explicitly coupling the multipole moments of the quantum charge distribution with the classical point charges. Our approach remedies some of the well known deficiencies of current electrostatic coupling schemes in QM/MM methods, allowing molecular dynamics simulations of mixed systems within a fully consistent and energy conser...

582 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The revised DFT-D method is proposed as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
Abstract: The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.

32,589 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: A new density functional of the generalized gradient approximation (GGA) type for general chemistry applications termed B97‐D is proposed, based on Becke's power‐series ansatz from 1997, and is explicitly parameterized by including damped atom‐pairwise dispersion corrections of the form C6 · R−6.
Abstract: A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance.

23,058 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations