scispace - formally typeset
Search or ask a question
Author

Usha P. Andley

Bio: Usha P. Andley is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Crystallin & Lens protein. The author has an hindex of 34, co-authored 87 publications receiving 8378 citations. Previous affiliations of Usha P. Andley include Massachusetts Eye and Ear Infirmary.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: Recent work with lens epithelial cells from alphaA- and alphaB-crystallin knockout mice suggests that crystallins have important cellular functions in the lens epithelium and not just the lens fiber cells as previously thought.

386 citations

Journal Article
TL;DR: This report constitutes the first successful immortalization of human lens epithelial cells, which may provide an important human cell line specific to in vivo human Lens epithelial cell physiology and would be of interest in establishing a human model to study lens cell differentiation and the etiology of cataract.
Abstract: Results. The primary cells from infant eyes proliferated for three passages before senescence was observed. However, the immortalized cells remained proliferative and retained the morphology of the primary cells. Immunohistochemical analysis demonstrated that these immortalized cells were SV40 large T antigen-positive and ceased to produce infectious virus after a few passages. Immortalized cells passaged to population doubling levels of 76 continued to form confluent cultures within 7 days of subculture. Analysis of proteins by SDS-PAGE and immunoblotting showed that immortalized cells produce a protein with molecular weight of about 25 kD, which reacted with an antibody to /3H-crystallin. Conclusions. This report constitutes the first successful immortalization of human lens epithelial cells. Currently, two cell lines have been created (B-3 and B-4) and passaged to population doubling levels of 76 and 52, respectively. These cells may provide an important human cell line specific to in vivo human lens epithelial cell physiology and would be of interest in establishing a human model to study lens cell differentiation and the etiology of cataract. These cells may also provide a constant and reproducible source of lens epithelial cells for eye-related toxicology studies and to assay inhibitory drugs for the prevention of cataracts and posterior capsular opacification observed after cataract extraction. Invest Ophthalmol Vis Sci. 1994;35:3094-3102.

202 citations

Journal ArticleDOI
06 Nov 2015-Science
TL;DR: The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract and partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo, suggesting an approach to treating cataracts by stabilizing α-crystallins.
Abstract: Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.

191 citations

Journal ArticleDOI
TL;DR: This study has identified the first dominant cataract mutation in CRYAA located outside the phylogenetically conserved ‘alpha-crystallin core domain’ of the sHSP family.
Abstract: Hereditary cataract is a clinically and genetically heterogeneous lens disease that accounts for a significant proportion of visual impairment and blindness in childhood. The alphaA-crystallin (CRYAA) gene (CRYAA) encodes a member of the small-heat-shock protein (sHSP) family of molecular chaperones and is primarily and abundantly expressed in the ocular lens. Here, we have used linkage analysis to identify a novel missense mutation in CRYAA that underlies an autosomal dominant form of 'nuclear' cataract segregating in a four-generation Caucasian family. A maximum two-point LOD score (Z(max)) of 2.19 (maximum recombination fraction, theta(max)=0) and multipoint Z(max) of 3.3 (theta(max)=0) was obtained at marker D21S1885. Haplotype analysis indicated that the disease gene lay in the approximately 2.7 Mb physical interval between D21S1912 and D21S1260 flanking CRYAA on 21q22.3. Sequence analysis identified a C --> T transition in exon 1 of CRYAA from affected individuals that was predicted to result in the nonconservative substitution of cysteine for arginine at codon 49 (R49C). Transfection studies of lens epithelial cells revealed that, unlike wild-type CRYAA, the R49C mutant protein was abnormally localized to the nucleus and failed to protect from staurosporine-induced apoptotic cell death. This study has identified the first dominant cataract mutation in CRYAA located outside the phylogenetically conserved 'alpha-crystallin core domain' of the sHSP family.

180 citations


Cited by
More filters
Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
Yu-Jie Li1, Qin Jiang, Guo-Fan Cao, Jin Yao, Biao Yan 
TL;DR: In this manuscript, the relevant progress about the role of autophagy in the pathogenesis of ocular diseases is reviewed and pharmacological manipulation of Autophagy may provide an alternative therapeutic target for some Ocular diseases.
Abstract: Autophagy is an important intracellular degradative process that delivers cytoplasmic proteins to lysosome for degradation. Dysfunction of autophagy is implicated in several human diseases, such as neurodegenerative diseases, infectious diseases, and cancers. Autophagy-related proteins are constitutively expressed in the eye. Increasing studies have revealed that abnormal autophagy is an important pathological feature of several ocular diseases. Pharmacological manipulation of autophagy may provide an alternative therapeutic target for some ocular diseases. In this manuscript, we reviewed the relevant progress about the role of autophagy in the pathogenesis of ocular diseases.

2,571 citations

Journal ArticleDOI
TL;DR: A functional classification of cell death subroutines is proposed that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic programmed cell death, regulated necrosis, autophagic cell death and mitotic catastrophe.
Abstract: In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell death, time has come to switch from morphological to molecular definitions of cell death modalities. Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis, caspase-dependent or -independent intrinsic apoptosis, regulated necrosis, autophagic cell death and mitotic catastrophe. Moreover, we discuss the utility of expressions indicating additional cell death modalities. On the basis of the new, revised NCCD classification, cell death subroutines are defined by a series of precise, measurable biochemical features.

2,238 citations

Journal ArticleDOI
TL;DR: A way forward is suggested for the effective targeting of autophagy by understanding the context-dependent roles of autophile and by capitalizing on modern approaches to clinical trial design.
Abstract: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.

1,606 citations

Journal ArticleDOI
TL;DR: This review summarizes emerging efforts in combating against infectious diseases, particularly using antimicrobial NPs and antibiotics delivery systems as new tools to tackle the current challenges in treating infectious diseases.

1,493 citations