scispace - formally typeset
Search or ask a question
Author

Uwe Hergenhahn

Bio: Uwe Hergenhahn is an academic researcher from Fritz Haber Institute of the Max Planck Society. The author has contributed to research in topics: Photoionization & Electron. The author has an hindex of 33, co-authored 165 publications receiving 4038 citations. Previous affiliations of Uwe Hergenhahn include Max Planck Society & Tohoku University.


Papers
More filters
Journal ArticleDOI
TL;DR: Electron spectra of photoexcited Ne clusters are shown to display a signal at low kinetic energies that is neither present in the Ne monomer nor at photon energies below the inner-valence 2s threshold, strong evidence for the existence of interatomic Coulombic decays (ICD).
Abstract: Electron spectra of photoexcited Ne clusters are shown to display a signal at low kinetic energies that is neither present in the Ne monomer nor at photon energies below the inner-valence $2s$ threshold. These findings are strong evidence for the existence of interatomic Coulombic decays (ICD), a mechanism that was recently predicted theoretically [Phys. Rev. Lett. 79, 4778 (1997)]. In ICD, an inner-valence hole state in a weakly bonded system can undergo ultrafast relaxation due to energy transfer to a neighboring atom, followed by electron emission from this neighboring site.

253 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental observation of ICD in $2s$ ionized neon dimers is reported, which is unambiguously identified by detecting the energy of two ${\mathrm{N}mathm{e}^{1+}$ fragments and the ICD electron in coincidence.
Abstract: Recently Cederbaum et al. [Phys. Rev. Lett. 79, 4778 (1997)] predicted a new decay channel of excited atoms and molecules termed interatomic Coulombic decay (ICD). In ICD the deexcitation energy is transferred via virtual photon exchange to a neighboring atom, which releases it by electron emission. We report on an experimental observation of ICD in $2s$ ionized neon dimers. The process is unambiguously identified by detecting the energy of two ${\mathrm{N}\mathrm{e}}^{1+}$ fragments and the ICD electron in coincidence, yielding a clean, background free experimental spectral distribution of the ICD electrons.

239 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment, and identify a hitherto unrecognized extra source of lowenergy electrons produced by a non-local autoionization process called intermolecular coulombic decay (ICD).
Abstract: Most of the low-energy electrons emitted from a material when it is subjected to ionization radiation are believed to be directly ionized secondary electrons. Coincidence measurements of the electrons ejected from water clusters suggests many are produced by a quantitatively new mechanism, known as intermolecular Coulombic decay. Low-energy electrons are the most abundant product of ionizing radiation in condensed matter. The origin of these electrons is most commonly understood to be secondary electrons1 ionized from core or valence levels by incident radiation and slowed by multiple inelastic scattering events. Here, we investigate the production of low-energy electrons in amorphous medium-sized water clusters, which simulate water molecules in an aqueous environment. We identify a hitherto unrecognized extra source of low-energy electrons produced by a non-local autoionization process called intermolecular coulombic decay2 (ICD). The unequivocal signature of this process is observed in coincidence measurements of low-energy electrons and photoelectrons generated from inner-valence states with vacuum-ultraviolet light. As ICD is expected to take place universally in weakly bound aggregates containing light atoms between carbon and neon in the periodic table2,3, these results could have implications for our understanding of ionization damage in living tissues.

233 citations

Journal ArticleDOI
TL;DR: Hartree-Fock calculations of O1s binding energies in different geometric arrangements of the water network are presented to rationalize the experimental distribution of O 1s electron binding energies.
Abstract: The authors report on photoelectron emission spectroscopy measurements of the oxygen 1s orbital of liquid water, using a liquid microjet in ultrahigh vacuum. By suitably changing the soft x-ray photon energy, within 600-1200 eV, the electron probing depth can be considerably altered as to either predominantly access the surface or predominantly bulk water molecules. The absolute probing depth in liquid water was inferred from the evolution of the O1s signal and from comparison with aqueous salt solution. The presence of two distinctive components in the core-level photoelectron spectrum, with significantly different binding energies, is revealed. The dominant contribution, at a vertical binding energy of 538.1 eV, was found in bulk and surface sensitive spectra. A weaker component at 536.6 eV binding energy appears to be present only in bulk water. Hartree-Fock calculations of O1s binding energies in different geometric arrangements of the water network are presented to rationalize the experimental distribution of O1s electron binding energies.

159 citations

Journal ArticleDOI
TL;DR: A quantitative determination of 2s vacancy lifetimes in surface and bulk atoms of free Ne clusters has been made, while for free atoms the 2s inner-valence hole has a ps lifetime, it reduces to 6+/-1 fs for cluster bulk atoms.
Abstract: A quantitative determination of 2s vacancy lifetimes in surface and bulk atoms of free Ne clusters has been made. While for free atoms the 2s inner-valence hole has a ps lifetime, it reduces to 6+/-1 fs for cluster bulk atoms. For surface atoms, the lifetime is on average longer than 30 fs. The lifetime estimate was obtained from fits of high-resolution photoelectron spectra of Ne clusters. The shortening of the lifetime is attributed to the coordination dependent interatomic Coulombic decay, which is extremely sensitive to internuclear distances.

156 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Proceedings Article
Ferenc Krausz1
01 Aug 2007
TL;DR: In this paper, an attosecond "oscilloscope" was used to visualize the oscillating electric field of visible light with an oscillator and probe multi-electron dynamics in atoms, molecules and solids.
Abstract: Summary form only given. Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 attosecond [as] = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 femtosecond = 1000 attoseconds). Atoms exposed to a few oscillations cycles of intense laser light are able to emit a single extreme ultraviolet (XUV) burst lasting less than one femtosecond. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated sub-femtosecond XUV pulses, demonstrating the control of microscopic processes (electron motion and photon emission) on an attosecond time scale. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond "oscilloscope", to control single-electron and probe multi-electron dynamics in atoms, molecules and solids. Recent experiments hold promise for the development of an attosecond X-ray source, which may pave the way towards 4D electron imaging with sub-atomic resolution in space and time.

1,618 citations

Book ChapterDOI
02 Mar 2001

984 citations

Journal ArticleDOI
TL;DR: In this article, the main properties of B-spline basis sets and why they are useful to solve different problems in atomic and molecular physics are discussed and an extensive reference list of theoretical works that have made use of them up to 2000 is provided.
Abstract: One of the most significant developments in computational atomic and molecular physics in recent years has been the introduction of B-spline basis sets in calculations of atomic and molecular structure and dynamics. B-splines were introduced in applied mathematics more than 50 years ago, but it has been in the 1990s, with the advent of powerful computers, that the number of applications has grown exponentially. In this review we present the main properties of B-splines and discuss why they are useful to solve different problems in atomic and molecular physics. We provide an extensive reference list of theoretical works that have made use of B-spline basis sets up to 2000. Among these, we have focused on those applications that have led to the discovery of new interesting phenomena and pointed out the reasons behind the success of the approach.

579 citations

Journal ArticleDOI
20 Jul 2012-Vacuum
TL;DR: In this article, the XPS peak fit was performed in a way compatible with the presence of Ag(I) and Ag(III) in AgO with 1:1 (v/v) stoichiometry as predicted by other properties, namely diamagnetism.

418 citations