scispace - formally typeset
Search or ask a question
Author

V. Andrew Stenger

Other affiliations: University of Pittsburgh
Bio: V. Andrew Stenger is an academic researcher from University of Hawaii at Manoa. The author has contributed to research in topics: Prefrontal cortex & Anterior cingulate cortex. The author has an hindex of 42, co-authored 70 publications receiving 14688 citations. Previous affiliations of V. Andrew Stenger include University of Pittsburgh.


Papers
More filters
Journal ArticleDOI
09 Jun 2000-Science
TL;DR: Event-related functional magnetic resonance imaging and a task-switching version of the Stroop task were used to examine whether these components of cognitive control have distinct neural bases in the human brain and a double dissociation was found.
Abstract: Theories of the regulation of cognition suggest a system with two necessary components: one to implement control and another to monitor performance and signal when adjustments in control are needed. Event-related functional magnetic resonance imaging and a task-switching version of the Stroop task were used to examine whether these components of cognitive control have distinct neural bases in the human brain. A double dissociation was found. During task preparation, the left dorsolateral prefrontal cortex (Brodmann's area 9) was more active for color naming than for word reading, consistent with a role in the implementation of control. In contrast, the anterior cingulate cortex (Brodmann's areas 24 and 32) was more active when responding to incongruent stimuli, consistent with a role in performance monitoring.

3,545 citations

Journal ArticleDOI
13 Feb 2004-Science
TL;DR: Using the Stroop color-naming task and controlling for repetition effects, it is demonstrated that ACC conflict-related activity predicts both greater prefrontal cortex activity and adjustments in behavior, supporting a role of ACC conflict monitoring in the engagement of cognitive control.
Abstract: Conflict monitoring by the anterior cingulate cortex (ACC) has been posited to signal a need for greater cognitive control, producing neural and behavioral adjustments. However, the very occurrence of behavioral adjustments after conflict has been questioned, along with suggestions that there is no direct evidence of ACC conflict-related activity predicting subsequent neural or behavioral adjustments in control. Using the Stroop color-naming task and controlling for repetition effects, we demonstrate that ACC conflict-related activity predicts both greater prefrontal cortex activity and adjustments in behavior, supporting a role of ACC conflict monitoring in the engagement of cognitive control.

2,783 citations

Journal ArticleDOI
TL;DR: In this article, the authors used event-related functional MRI and a version of the Stroop color naming task to test two conflicting theories of anterior cingulate cortex (ACC) function during executive processes of cognition.
Abstract: Event-related functional MRI and a version of the Stroop color naming task were used to test two conflicting theories of anterior cingulate cortex (ACC) function during executive processes of cognition. A response-related increase in ACC activity was present when strategic processes were less engaged, and conflict high, but not when strategic processes were engaged and conflict reduced. This is inconsistent with the widely held view that the ACC implements strategic processes to reduce cognitive conflicts, such as response competition. Instead, it suggests that the ACC serves an evaluative function, detecting cognitive states such as response competition, which may lead to poor performance, and representing the knowledge that strategic processes need to be engaged.

973 citations

Journal ArticleDOI
TL;DR: It is suggested that depression is associated with sustained activity in brain areas responsible for coding emotional features in response to processing negative features of information.

855 citations

Journal ArticleDOI
TL;DR: A highly specific contribution of the anterior cingulate cortex to executive functions is suggested, through the detection of conflicts occurring at later or response-related levels of processing.

638 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Journal ArticleDOI
TL;DR: Two computational modeling studies are reported, serving to articulate the conflict monitoring hypothesis and examine its implications, including a feedback loop connecting conflict monitoring to cognitive control, and a number of important behavioral phenomena.
Abstract: A neglected question regarding cognitive control is how control processes might detect situations calling for their involvement. The authors propose here that the demand for control may be evaluated in part by monitoring for conflicts in information processing. This hypothesis is supported by data concerning the anterior cingulate cortex, a brain area involved in cognitive control, which also appears to respond to the occurrence of conflict. The present article reports two computational modeling studies, serving to articulate the conflict monitoring hypothesis and examine its implications. The first study tests the sufficiency of the hypothesis to account for brain activation data, applying a measure of conflict to existing models of tasks shown to engage the anterior cingulate. The second study implements a feedback loop connecting conflict monitoring to cognitive control, using this to simulate a number of important behavioral phenomena.

6,385 citations