scispace - formally typeset
Search or ask a question
Author

V. C. Patel

Bio: V. C. Patel is an academic researcher from University of Iowa. The author has contributed to research in topics: Turbulence & Boundary layer. The author has an hindex of 26, co-authored 59 publications receiving 3424 citations. Previous affiliations of V. C. Patel include Korea Maritime and Ocean University & University of Windsor.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the flow of an incompressible viscous fluid past a sphere is investigated numerically and experimentally over flow regimes including steady and unsteady laminar flow at Reynolds numbers of up to 300.
Abstract: The flow of an incompressible viscous fluid past a sphere is investigated numerically and experimentally over flow regimes including steady and unsteady laminar flow at Reynolds numbers of up to 300. Flow-visualization experiments are used to validate the numerical results and to provide additional insight into the behaviour of the flow. Near-wake visualizations are presented for both steady and unsteady flows. Calculations for Reynolds numbers of up to 200 show steady axisymmetric flow and compare well with previous experimental and numerical observations. For Reynolds numbers of 210 to 270, a steady non-axisymmetric regime is found, also in agreement with previous work. To advance the basic understanding of this transition, a symmetry breaking mechanism is proposed based on a detailed analysis of the calculated flow field.Unsteady flow is calculated at Reynolds numbers greater than 270. The results at a Reynolds number of 300 show a highly organized periodic flow dominated by vortex shedding. An analysis of the calculated vortical structure of the wake reveals a sequence of shed hairpin vortices in combination with a sequence of previously unidentified induced hairpin vortices. The numerical results compare favourably with experimental flow visualizations which, interestingly, fail to reveal the induced vortices. Based on the deduced symmetry-breaking mechanism, an analysis of the unsteady kinematics, and the experimental results, a mechanism driving the transition to unsteady flow is proposed.

920 citations

Journal ArticleDOI
TL;DR: In this paper, the complete fully elliptic, Reynoldsaveraged Navier-Stokes equations have been solved using a low-Reynoldsnumber model, a new two-layer model, and a two-point wall-function method, in the k-s turbulence model, for the boundary layer and wake of two axisymmetric bodies.
Abstract: Results of a computational experiment designed to investigate the performance of different near-wall treatments in a single turbulence model with a common numerical method are reported. The complete fully elliptic, Reynoldsaveraged Navier-Stokes equations have been solved using a low-Reynolds-number model, a new two-layer model, and a two-point wall-function method, in thek-s turbulence model, for the boundary layer and wake of two axisymmetric bodies. These tests enable the evaluation of the performance of the different approaches in flows involving longitudinal and transverse surface curvatures, streamwise and normal pressure gradients, viscous-inviscid interaction, and separation. The two-layer approach has been found to be quite promising for such flows and can be extended to other complex flows.

682 citations

Journal ArticleDOI
TL;DR: In this paper, the mean pressure distribution and boundary layer development on rough-walled circular cylinders in a uniform stream are described, and it is found that there is a significant influence of surface roughness on the mean-pressure distribution even at large Reynolds numbers.
Abstract: Measurements of mean-pressure distributions and boundary-layer development on rough-walled circular cylinders in a uniform stream are described. Five sizes of distributed sandpaper roughness have been tested over the Reynolds-number range 7 × 104 to 5·5 × 105. The results are examined together with those of previous investigators, and the observed roughness effects are discussed in the light of boundary-layer theory. It is found that there is a significant influence of surface roughness on the mean-pressure distribution even at very large Reynolds numbers. This observation is supported by an extension of the Stratford–Townsend theory of turbulent boundary-layer separation to the case of circular cylinders with distributed roughness. The pressure rise to separation is shown to be closely related, as expected, to the characteristics of the boundary layer, smaller pressure rises being associated with thicker boundary layers with greater momentum deficits. Larger roughness gives rise to a thicker and more retarded boundary layer which separates earlier and with a smaller pressure recovery.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a general numerical method for the solution of complete Reynolds-averaged Navier-Stokes equations for three-dimensional flows is described, using nonorthogonal body-fitted coordinates, generated either analytically or numerically, while retaining the velocity components in a triply-orthogonal curvilinear coordinate system.

143 citations

Journal ArticleDOI
V. C. Patel1
TL;DR: The law of the wall and related correlations underpin much of current computational fluid dynamics (CFD) software, either directly through use of so-called wall functions or indirectly in near-wall turbulence models as discussed by the authors.
Abstract: The law of the wall and related correlations underpin much of current computational fluid dynamics (CFD) software, either directly through use of so-called wall functions or indirectly in near-wall turbulence models. The correlations for near-wall flow become crucial in solution of two problems of great practical importance, namely, in prediction of flow at high Reynolds numbers and in modeling the effects of surface roughness. Although the two problems may appear vastly different from a physical point of view, they share common numerical features. Some results from the 'super-pipe' experiment at Princeton University are analyzed along with those of previous experiments on the boundary layer on an axisymmetric body to identify features of near-wall flow at high Reynolds numbers that are useful in modeling. The study is complemented by a review of some computations in simple and complex flows to reveal the strengths and weaknesses of turbulence models used in modern CFD methods. Similarly, principal results of classical experiments on the effects of sand-grain roughness are reviewed, along with various models proposed to account for these effects in numerical solutions

130 citations


Cited by
More filters
Proceedings ArticleDOI
06 Jul 1993
TL;DR: In this article, two versions of the k-w two-equation turbulence model are presented, the baseline model and the Shear-Stress Transport (SSn) model.
Abstract: Two new versions of the k - w two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k - w model of Wilcox. but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner SOC7£; of the boundary-layer but changes gradually to the standard k - f. model (in a k - w fonnulation) towards the boundary-layer edge. The new model is also virtually identical to the k - f. model for free shear layers. The second version of the model is called Shear-Stress Transport (SSn model. It is a variation of the BSL model with the additional ability to account for the transport of the principal turbulent shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear-stress is pro­ portional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different fiowfields. The results of the BSL model are similar to those of the original k - w model, but without the undesirable free stream dependency. The predictions of the SST model are also independent of the freestrearn values but show better agreement with exper­ imental data for adverse pressure gradient boundary-layer flows.

2,470 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the experimental evidence on turbulent flows over rough walls and discuss some ideas on how rough walls can be modeled without the detailed computation of the flow around the roughness element.
Abstract: ▪ AbstractWe review the experimental evidence on turbulent flows over rough walls. Two parameters are important: the roughness Reynolds number ks+, which measures the effect of the roughness on the buffer layer, and the ratio of the boundary layer thickness to the roughness height, which determines whether a logarithmic layer survives. The behavior of transitionally rough surfaces with low ks+ depends a lot on their geometry. Riblets and other drag-reducing cases belong to this regime. In flows with δ/k ≲ 50, the effect of the roughness extends across the boundary layer, and is also variable. There is little left of the original wall-flow dynamics in these flows, which can perhaps be better described as flows over obstacles. We also review the evidence for the phenomenon of d-roughness. The theoretical arguments are sound, but the experimental evidence is inconclusive. Finally, we discuss some ideas on how rough walls can be modeled without the detailed computation of the flow around the roughness element...

1,389 citations

Journal ArticleDOI
TL;DR: In this paper, a new immersed-boundary method for simulating flows over or inside complex geometries is developed by introducing a mass source/sink as well as a momentum forcing.

1,090 citations

Journal ArticleDOI
TL;DR: A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described, with special emphasis on the immersed boundary treatment for stationary and moving boundaries.

1,013 citations

Journal ArticleDOI
TL;DR: In this article, a review of the control of flow separation from solid surfaces by periodic excitation is presented, with an emphasis on experimentation relating to hydrodynamic excitation, although acoustic methods as well as traditional boundary layer control, such as steady blowing and suction are discussed in order to provide an appropriate historical context for recent developments.

1,008 citations