scispace - formally typeset
Search or ask a question
Author

V. Fellner

Bio: V. Fellner is an academic researcher from North Carolina State University. The author has contributed to research in topics: Total mixed ration & Hay. The author has an hindex of 17, co-authored 34 publications receiving 998 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this study, cows fed LPHU had significantly lower MUN and predicted urinary N without limiting production, demonstrating the potential to optimize milk production while minimizing N excretion in lactating dairy cattle.

120 citations

Journal ArticleDOI
TL;DR: Overall, no differences in intake, milk yield, or milk composition were observed in primiparous cows, and there were no beneficial effects of RP-betaine supplementation to a Met-limited TMR.

98 citations

Journal ArticleDOI
TL;DR: The results of this study show that M and SBO effects are additive for all trans FA except for trans-10 C18:1, and suggest more severe depressions in milk fat content when cows are fed M along with unsaturated plant oils.

95 citations

Journal ArticleDOI
TL;DR: It is indicated that as little as 20 mg of supplemental Cu/kg DM can reduce backfat and may alter lipid metabolism in steers fed high-concentrate diets.
Abstract: An experiment was conducted to determine the effects of Cu and soybean oil (SBO) supplementation on ruminal and tissue lipid metabolism and carcass characteristics in finishing steers. Sixty Angus steers (369.0 +/- 10.1 kg) were stratified by weight and randomly assigned to treatments in a 2 x 2 factorial arrangement, with factors being 0 or 20 mg of supplemental Cu/kg DM from Cu sulfate and 0 or 4% SBO. Steers were fed a high-concentrate basal diet that contained 5.3 mg Cu/kg DM. Average daily gain and feed intake were reduced (P < 0.01) by SBO but were not affected by Cu. Gain:feed ratio was not affected by treatment. Liver Cu concentrations were higher (P < 0.01) in steers receiving supplemental Cu and lower (P < 0.04) in SBO-supplemented steers. Copper supplementation tended to reduce (P < 0.12) and SBO supplementation tended to increase (P < 0.11) serum cholesterol concentrations. Backfat depth was reduced (P < 0.10) by Cu and SBO supplementation. Marbling scores and longissimus muscle lipid content were not affected by Cu supplementation; however, SBO supplementation reduced (P < 0.01) marbling scores. Longissimus muscle polyunsaturated fatty acids tended to be increased (P < 0.14) in Cu-supplemented steers. Longissimus muscle C18-conjugated dienes and the 18:1 trans isomer were increased (P < 0.05) in SBO-supplemented steers. Ruminal fluid 18:3 was increased (P < 0.05) and the 18:1 trans isomer was decreased (P < 0.05) in Cu-supplemented steers. These results indicate that as little as 20 mg of supplemental Cu/kg DM can reduce backfat and may alter lipid metabolism in steers fed high-concentrate diets.

81 citations

Journal ArticleDOI
TL;DR: Dilution rate and forage-to-concentrate ratio altered the partition of substrate by microbes and underestimated methane output at higher dilution rates and with high forage diets.

70 citations


Cited by
More filters
Journal ArticleDOI
Caroline M. Pond1
TL;DR: This book is based on a symposium organized by the Entomological Society of America in 1980 and will prove to be an important book in bringing together recent research on the mating systems of orthopterans, and discussing their behaviour in the light of current theory in behavioura].

911 citations

Journal ArticleDOI
TL;DR: High throughput microbial 16S ribosomal RNA gene sequencing indicated that diversity, richness and composition of howler GI microbiomes varied with host habitat in relation to diet, and a reduction in the number of genes related to butyrate production and hydrogen metabolism in the microbiomes of howlers occupying suboptimal habitats may impact host health.
Abstract: The gastrointestinal (GI) microbiome contributes significantly to host nutrition and health. However, relationships involving GI microbes, their hosts and host macrohabitats remain to be established. Here, we define clear patterns of variation in the GI microbiomes of six groups of Mexican black howler monkeys (Alouatta pigra) occupying a gradation of habitats including a continuous evergreen rainforest, an evergreen rainforest fragment, a continuous semi-deciduous forest and captivity. High throughput microbial 16S ribosomal RNA gene sequencing indicated that diversity, richness and composition of howler GI microbiomes varied with host habitat in relation to diet. Howlers occupying suboptimal habitats consumed less diverse diets and correspondingly had less diverse gut microbiomes. Quantitative real-time PCR also revealed a reduction in the number of genes related to butyrate production and hydrogen metabolism in the microbiomes of howlers occupying suboptimal habitats, which may impact host health.

910 citations

Journal ArticleDOI
TL;DR: More studies in rodents and humans fed dairy products modified by changing ruminant diet are required before recommending a larger use of lipid sources and how to combine them with the different feeding systems used by dairy farmers.
Abstract: The potential to modify the milk fatty acid (FA) composition by changing the cow or goat diets is reviewed. Ruminal biohydrogenation (RBH), combined with mammary lipogenic and A-9 desaturation pathways, considerably modifies the profile of dietary FA and thus milk composition. The pasture has major effects by decreasing saturated FA and increasing FA considered as favorable for human health (c9-18:1, 18:3n-3 and c9t11-CLA), compared to winter diets, especially those based on maize silage and concentrates. Plant lipid supplements have effects similar to pasture, especially linseed, but they increase to a larger extent, simultaneously several trans isomers of 18:1 and, conjugated or non-conjugated 18:2, especially when added to maize silage or concentrate-rich diets. The goat responds better for milk 18:3n-3 and c9t11-CLA, and sometimes less for c9-18:1, and is less prone to the RBH trans-11 to trans-10 shift, which has been shown to be time dependent in the cow. The respective physiological roles of most milk trans FA have not been studied to date, and more studies in rodents and humans fed dairy products modified by changing ruminant diet are required before recommending a larger use of lipid sources and how to combine them with the different feeding systems used by dairy farmers.

748 citations

Journal ArticleDOI
TL;DR: The different methods used to inhibit the H2-consuming bacteria are analyzed, such as biokinetic control, heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale.
Abstract: In this work, H2 production by anaerobic mixed cultures was reviewed. First, the different anaerobic microbial communities that have a direct relation with the generation or consumption of H2 are discussed. Then, the different methods used to inhibit the H2-consuming bacteria are analyzed (mainly in the methanogenesis phase) such as biokinetic control (low pH and short hydraulic retention time), heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale. After that, biochemical pathways of carbohydrate degradation to H2, organic acids and solvents are showed. Fourth, structure, diversity and dynamics of H2-producers communities are detailed. Later, the hydrogenase structure and activity is related with H2 production. Also, the causes for H2 production inhibition are analyzed along with strategies to avoid it. Finally, immobilized-cells systems are presented as a way to enhance H2 production.

347 citations

Journal ArticleDOI
TL;DR: This study discusses in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Abstract: Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.

267 citations