scispace - formally typeset
Search or ask a question
Author

V. Kamakoti

Bio: V. Kamakoti is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Field-programmable gate array & Benchmark (computing). The author has an hindex of 17, co-authored 121 publications receiving 901 citations. Previous affiliations of V. Kamakoti include National Institute of Technology, Tiruchirappalli & Indian Institute of Science.


Papers
More filters
Proceedings ArticleDOI
TL;DR: Experimental results obtained by employing the proposed algorithm on standard benchmark video sequences show that they yield comparable quality of recovered video with significantly less computation than the best reported in the literature, thus making it suitable for real-time applications.
Abstract: This paper proposes a fast statistical approach to recover lost motion vectors in H.264 video coding standard. Unlike other video coding standards, the motion vectors of H.264 cover smaller area of the video frame being encoded. This leads to a strong correlation between neighboring motion vectors, thus making H.264 standard amenable for statistical analysis to recover the lost motion vectors. This paper proposes a Pearson Correlation Coefficient based matching algorithm that speeds up the recovery of lost motion vectors with very less compromise in visual quality of the recovered video. To the best of our knowledge, this is the first attempt that employs correlation coefficient for motion vector recovery. Experimental results obtained by employing the proposed algorithm on standard benchmark video sequences show that they yield comparable quality of recovered video with significantly less computation than the best reported in the literature, thus making it suitable for real-time applications.

1 citations

Journal ArticleDOI
TL;DR: The activities and practice in the area of MVR-based error concealment during the last two decades has been mainly elaborated here and a performance comparison of the prominent MVR techniques has also been presented.
Abstract: Error concealment in video communication is becoming increasingly important because of the growing interest in video delivery over unreliable channels such as wireless networks and the Internet. A subclass of this error concealment in video communication is known as motion vector recovery (MVR). MVR techniques try to retrieve the lost motion information in the compressed video streams based on the available information in the locality (both spatial and temporal) of the lost data. The activities and practice in the area of MVR-based error concealment during the last two decades has been mainly elaborated here. A performance comparison of the prominent MVR techniques has also been presented.

1 citations

Book ChapterDOI
22 Nov 2004
TL;DR: A new face recognition system based on eigenface analysis on segments of face images is discussed in this paper, which can tolerate local variations in the face such as expression changes and directional lighting.
Abstract: A new face recognition system based on eigenface analysis on segments of face images is discussed in this paper. The eigenfaces are extracted using principal component neural networks. The proposed recognition system can tolerate local variations in the face such as expression changes and directional lighting. Further, the system can be easily mapped onto the hardware.

1 citations

Journal ArticleDOI
TL;DR: Novel pseudo-online built-in self-test based techniques for detecting and locating multiple faults in lookup tables (LUTs), interconnects and dedicated clock lines of field programmable gate arrays (FPGAs).

1 citations

Book ChapterDOI
26 Sep 2011
TL;DR: It is argued that Hardware Transactional Memory (HTM) can be a suitable implementation choice for these systems and the knowledge about the workload is extremely useful to make appropriate design choices in the workload optimized HTM.
Abstract: Workload optimized systems consisting of large number of general and special purpose cores, and with a support for shared memory programming, are slowly becoming prevalent. One of the major impediments for effective parallel programming on these systems is lock-based synchronization. An alternate synchronization solution called Transactional Memory (TM) is currently being explored.We observe that most of the TM design proposals in literature are catered to match the constrains of general purpose computing platforms. Given the fact that workload optimized systems utilize wider hardware design spaces and on-chip parallelism, we argue that Hardware Transactional Memory (HTM) can be a suitable implementation choice for these systems. We re-evaluate the criteria to be satisfied by a HTM and identify possible scope for relaxations in the context of workload optimized systems. Based on the relaxed criteria, we demonstrate the scope for building HTM design variants, such that, each variant caters to a specific workload requirement. We carry out suitable experiments to bring about the trade-off between the design variants. Overall, we show how the knowledge about the workload is extremely useful to make appropriate design choices in the workload optimized HTM.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has been provided.
Abstract: Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.

751 citations

01 Jan 2010
TL;DR: This journal special section will cover recent progress on parallel CAD research, including algorithm foundations, programming models, parallel architectural-specific optimization, and verification, as well as other topics relevant to the design of parallel CAD algorithms and software tools.
Abstract: High-performance parallel computer architecture and systems have been improved at a phenomenal rate. In the meantime, VLSI computer-aided design (CAD) software for multibillion-transistor IC design has become increasingly complex and requires prohibitively high computational resources. Recent studies have shown that, numerous CAD problems, with their high computational complexity, can greatly benefit from the fast-increasing parallel computation capabilities. However, parallel programming imposes big challenges for CAD applications. Fully exploiting the computational power of emerging general-purpose and domain-specific multicore/many-core processor systems, calls for fundamental research and engineering practice across every stage of parallel CAD design, from algorithm exploration, programming models, design-time and run-time environment, to CAD applications, such as verification, optimization, and simulation. This journal special section will cover recent progress on parallel CAD research, including algorithm foundations, programming models, parallel architectural-specific optimization, and verification. More specifically, papers with in-depth and extensive coverage of the following topics will be considered, as well as other topics relevant to the design of parallel CAD algorithms and software tools. 1. Parallel algorithm design and specification for CAD applications 2. Parallel programming models and languages of particular use in CAD 3. Runtime support and performance optimization for CAD applications 4. Parallel architecture-specific design and optimization for CAD applications 5. Parallel program debugging and verification techniques particularly relevant for CAD The papers should be submitted via the Manuscript Central website and should adhere to standard ACM TODAES formatting requirements (http://todaes.acm.org/). The page count limit is 25.

459 citations

Journal ArticleDOI
TL;DR: The state of the art in parallel metaheuristics is discussed here on, in a summarized manner, to provide a solution to deal with some of the growing topics.

275 citations

Book
01 Jan 2008
TL;DR: This book is a comprehensive reference on concepts, research and trends in on-chip communication architecture design, and will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on- chip communication architectures.
Abstract: Over the past decade, system-on-chip (SoC) designs have evolved to address the ever increasing complexity of applications, fueled by the era of digital convergence. Improvements in process technology have effectively shrunk board-level components so they can be integrated on a single chip. New on-chip communication architectures have been designed to support all inter-component communication in a SoC design. These communication architecture fabrics have a critical impact on the power consumption, performance, cost and design cycle time of modern SoC designs. As application complexity strains the communication backbone of SoC designs, academic and industrial R&D efforts and dollars are increasingly focused on communication architecture design. This book is a comprehensive reference on concepts, research and trends in on-chip communication architecture design. It will provide readers with a comprehensive survey, not available elsewhere, of all current standards for on-chip communication architectures. KEY FEATURES * A definitive guide to on-chip communication architectures, explaining key concepts, surveying research efforts and predicting future trends * Detailed analysis of all popular standards for on-chip communication architectures * Comprehensive survey of all research on communication architectures, covering a wide range of topics relevant to this area, spanning the past several years, and up to date with the most current research efforts * Future trends that with have a significant impact on research and design of communication architectures over the next several years

224 citations