scispace - formally typeset
Search or ask a question
Author

V. Komarek

Bio: V. Komarek is an academic researcher from University of Veterinary Medicine Vienna. The author has contributed to research in topics: Brachyspira. The author has an hindex of 1, co-authored 1 publications receiving 37 citations.
Topics: Brachyspira

Papers
More filters
Journal ArticleDOI
TL;DR: This investigation shows that infections with weakly haemolytic Brachyspira spp.

39 citations


Cited by
More filters
Journal ArticleDOI
27 Feb 2013-PLOS ONE
TL;DR: “Brachyspira hampsonii” strain 30446 causes mucohaemorrhagic diarrhea in pigs following a 4–9 day incubation period, and culture and 30446-specific qPCR are reliable methods of detection of this organism in feces and tissues of diarrheic pigs.
Abstract: Background Mucohaemorrhagic diarrhea caused by Brachyspira hyodysenteriae, swine dysentery, is a severe production limiting disease of swine. Recently, pigs in western Canada with clinical signs indistinguishable from swine dysentery were observed. Despite the presence of spirochetes on fecal smears, recognized Brachyspira spp. including B. hyodysenteriae could not be identified. A phylogenetically distinct Brachyspira, called “B. hampsonii” strain 30446, however was isolated. The purpose of this study was to experimentally reproduce mucohaemorrhagic colitis and characterize strain 30446 shedding following inoculation. Methods and Findings Eighteen 13-week-old pigs were randomly assigned to inoculation (n = 12) or control (n = 6) groups in each of two trials. In trial 1, pigs were inoculated with a tissue homogenate collected from clinically affected field cases. In trial 2, pigs were inoculated with a pure broth culture of strain 30446. In both trials, mucohaemorrhagic diarrhea was significantly more common in inoculated pigs than controls, all of which remained healthy. In animals with mucohaemorrhagic diarrhea, significantly more spirochetes were observed on Gram stained fecal smears, and higher numbers of strain 30446 genome equivalents were detected by quantitative PCR (qPCR). Strain 30446 was cultured from colon and/or feces of all affected but no control animals at necropsy. Conclusions “Brachyspira hampsonii” strain 30446 causes mucohaemorrhagic diarrhea in pigs following a 4–9 day incubation period. Fecal shedding was detectable by day 4 post inoculation, and rarely preceded the onset of mucoid or haemorrhagic diarrhea by more than 2 days. Culture and 30446-specific qPCR are reliable methods of detection of this organism in feces and tissues of diarrheic pigs. The emergence of a novel Brachyspira spp., such as “B. hampsonii”, creates diagnostic challenges including higher risk of false negative diagnostic tests. We therefore recommend diagnostic laboratories routinely use Brachyspira culture, nox-based and species-specific PCR, and DNA sequencing to diagnose Brachyspira-associated colitis in pigs.

77 citations

Journal ArticleDOI
TL;DR: Results suggest that phenotypic culture characteristics of Brachyspira spp.
Abstract: Classical swine dysentery is associated with the presence of the strongly beta-hemolytic Brachyspira hyodysenteriae. However, multiple Brachyspira spp. can colonize the porcine colon. Since 2008, several Brachyspira spp. not identified as B. hyodysenteriae by genotypic and/or phenotypic methods have been isolated from the feces of pigs with clinical disease typical of swine dysentery. In the current study, 8 clinical isolates, including 5 strongly beta-hemolytic and 3 weakly beta-hemolytic Brachyspira strains, and a reference strain of B. hyodysenteriae (B204) were inoculated into pigs (n = 6 per isolate) to compare pathogenic potential following oral inoculation. Results revealed that strongly beta-hemolytic isolates induced significantly greater typhlocolitis than those that are weakly beta-hemolytic, regardless of the genetic identification of the isolate, and that strongly beta-hemolytic isolates identified as "Brachyspira sp. SASK30446" and Brachyspira intermedia by polymerase chain reaction (PCR) produced lesions similar to those caused by B. hyodysenteriae. The results suggest that phenotypic culture characteristics of Brachyspira spp. may be a more sensitive indicator of potential to induce dysentery-like disease in pigs than molecular identification alone based on currently available PCR assays. Additionally, culture of mucosal scrapings obtained at necropsy was more sensitive than direct PCR on the same samples for detection of Brachyspira spp.

55 citations

Journal ArticleDOI
TL;DR: The qPCR assay for Lawsonia was found to be more sensitive than cultivation for E. coli and B. pilosicoli and the parallel simultaneous analysis for several bacteria in multi-qPCR and the determination of the quantities of the infectious agents increases the information obtained from the samples and the chance for obtaining a relevant diagnosis.

41 citations

Journal ArticleDOI
TL;DR: Evidence that bacteriophages were being remodeled and genes incorporated into them within the Brachyspira genomes is found, and a mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacter iophages in combination with broad tropism.
Abstract: Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism.

37 citations

Journal ArticleDOI
TL;DR: B. hampsonii is classified as a unique species with genetically diverse yet phenotypically similar genomovars (I, II, and III) and the type strain NSH-16 (= ATCC BAA-2463 = NCTC 13792).
Abstract: Swine dysentery (SD) is a mucohemorrhagic colitis of swine classically caused by infection with the intestinal spirochete Brachyspira hyodysenteriae Since around 2007, cases of SD have occurred in North America associated with a different strongly beta-hemolytic spirochete that has been molecularly and phenotypically characterized and provisionally named "Brachyspira hampsonii." Despite increasing international interest, B. hampsonii is currently not recognized as a valid species. To support its recognition, we sequenced the genomes of strains NSH-16T, NSH-24, and P280/1, representing B. hampsonii genetic groups I, II, and III, respectively, and compared them with genomes of other valid Brachyspira species. The draft genome of strain NSH-16T has a DNA G+C content of 27.4% and an approximate size of 3.2 Mb. Genomic indices, including digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI), clearly differentiated B. hampsonii from other recognized Brachyspira species. Although discriminated genotypically, the three genetic groups are phenotypically similar. By electron microscopy, cells of different strains of B. hampsonii measure 5 to 10 μm by 0.28 to 0.34 μm, with one or two flat curves, and have 10 to 14 periplasmic flagella inserted at each cell end. Using a comprehensive evaluation of genotypic (gene comparisons and multilocus sequence typing and analysis), genomic (dDDH, ANI, and AAI) and phenotypic (hemolysis, biochemical profiles, protein spectra, antibiogram, and pathogenicity) properties, we classify Brachyspira hampsonii sp. nov. as a unique species with genetically diverse yet phenotypically similar genomovars (I, II, and III). We designate the type strain NSH-16 (= ATCC BAA-2463 = NCTC 13792).

36 citations