scispace - formally typeset
Search or ask a question
Author

V. Ramakrishnan

Bio: V. Ramakrishnan is an academic researcher from Madurai Kamaraj University. The author has contributed to research in topics: Raman spectroscopy & Hydrogen bond. The author has an hindex of 30, co-authored 145 publications receiving 2726 citations. Previous affiliations of V. Ramakrishnan include Indian Institute of Science & Indian Institute of Science Education and Research, Thiruvananthapuram.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the shape and position of the 2D band of Raman spectra revealed the formation of bilayer to few layer graphene and the presence of uniformly distributed bilayer graphene sheets on the substrate.
Abstract: The exfoliation of graphene from pristine graphite in a liquid phase was achieved successfully via sonication followed by centrifugation method. Ultraviolet–visible (UV–vis) spectra of the obtained graphene dispersions at different exfoliation time indicated that the concentration of graphene dispersion increased markedly with increasing exfoliation time. The sheet-like morphology of the exfoliated graphene was revealed by Scanning Electron Microscopy (SEM) image. Further, the morphological change in different exfoliation time was investigated by Atomic Force Microscopy (AFM). A complete structural and defect characterization was probed using micro-Raman spectroscopic technique. The shape and position of the 2D band of Raman spectra revealed the formation of bilayer to few layer graphene. Also, Raman mapping confirmed the presence of uniformly distributed bilayer graphene sheets on the substrate.

161 citations

Journal ArticleDOI
TL;DR: A novel titanium dioxide nanocarrier was synthesized for targeted delivery of the anticancer drug, paclitaxel, by grafting folic acid (FA) onto the PEGylated titanium dioxide nanoparticles, which possessed a considerably higher adsorption capability.

109 citations

Journal ArticleDOI
24 Aug 2011
TL;DR: The results show that the presence of zinc increases the drug release percentage and that the drug was released in a controlled manner, and the ciprofloxacin-loaded hydroxyapatite nanoparticles have a good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus.
Abstract: In bone disorders infections are common. The concentration of majority of antibiotics is very low in the bone tissue. A high local dose can be obtained from the ciprofloxacin-loaded hydroxyapatite nanoparticles. The present study is aimed at developing the use of hydroxyapatite and zinc-doped hydroxyapatite nanoparticles as a carrier for ciprofloxacin drug delivery system. The ciprofloxacin-loaded hydroxyapatite and zinc-doped hydroxyapatite have a good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus. Hydroxyapatite and zinc-doped hydroxyapatite were prepared and characterized using X-ray diffraction, Transmission electron microscopy and inductively coupled plasma optical emission spectrometry. They were loaded with ciprofloxacin using optimized drug loading parameters. Drug loading, in vitro drug release and antimicrobial activity were analyzed. The influence of zinc on the controlled release of ciprofloxacin was analyzed. The results show that the presence of zinc increases the drug release percentage and that the drug was released in a controlled manner.

103 citations

Journal ArticleDOI
TL;DR: In this article, the vibrational spectra of strontium titanate (SrTiO 3 ) is analyzed by Raman and Fourier Transform Infrared techniques, showing strong first order Raman scattering which is normally absent in bulk SrTiO3 crystal due to breaking of symmetry.

103 citations

Journal ArticleDOI
TL;DR: The synthesis of folic acid (FA) modified polyethylene glycol (PEG) functionalized hydroxyapatite (HAp) nanoparticles is reported, which shows an initial rapid release and then a sustained release.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors synthesize graphene analogous with high nitrogen content using a zeolitic imidazolate framework, which shows exceptional battery performances, but the nitrogen content is often quite low.
Abstract: Nitrogen-doped graphene can be used for lithium storage, but the nitrogen content is often quite low. Here, the authors synthesize graphene analogous with high nitrogen content using a zeolitic imidazolate framework, which show exceptional battery performances.

1,229 citations

Journal ArticleDOI
Ling Zhu1, Wen Zeng1
TL;DR: In this paper, the room-temperature gas sensing properties of ZnO-based gas sensors are comprehensively reviewed, and more attention is particularly paid to the effective strategies that create room temperature gas sensing, mainly including surface modification, additive doping and light activation.
Abstract: Novel gas sensors with high sensing properties, simultaneously operating at room temperature are considerably more attractive owing to their low power consumption, high security and long-term stability. Till date, zinc oxide (ZnO) as semiconducting metal oxide is considered as the promising resistive-type gas sensing material, but elevated operating temperature becomes the bottleneck of its extensive applications in the field of real-time gas monitoring, especially in flammable and explosive gas atmosphere. In this respect, worldwide efforts have been devoted to reducing the operating temperature by means of multiple methods In this communication, room-temperature gas sensing properties of ZnO based gas sensors are comprehensively reviewed. Much more attention is particularly paid to the effective strategies that create room-temperature gas sensing of ZnO based gas sensors, mainly including surface modification, additive doping and light activation. Finally, some perspectives for future investigation on room-temperature gas-sensing materials are discussed as well.

756 citations

Journal ArticleDOI
TL;DR: In this article, the performance of zinc oxide (ZnO) has been improved by tailoring its surface-bulk structure and altering its photogenerated charge transfer pathways with an intention to inhibit the surfacebulk charge carrier recombination.
Abstract: As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion–dissolution at extreme pH conditions, together with the formation of inert Zn(OH)2 during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

643 citations

Journal ArticleDOI
TL;DR: With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed.
Abstract: Charge and proton transfer reactions in the excited states of organic dyes can be coupled in many different ways. Despite the complementarity of charges, they can occur on different time scales and in different directions of the molecular framework. In certain cases, excited-state equilibrium can be established between the charge-transfer and proton-transfer species. The interplay of these reactions can be modulated and even reversed by variations in dye molecular structures and changes of the surrounding media. With knowledge of the mechanisms of these processes, desired rates and directions can be achieved, and thus the multiple emission spectral features can be harnessed. These features have found versatile applications in a number of cutting-edge technological areas, particularly in fluorescence sensing and imaging.

569 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on various physical, chemical and bio-assisted methods largely employed to synthesize and fabricate NPs of varying size, surface characteristics, functionalities and physicochemical behavior is provided in this paper.
Abstract: Ongoing advances in nanotechnology research have established a variety of methods to synthesize nanoparticles (NPs) from a diverse range of materials, including metals, semiconductors, ceramics, metal oxides, polymers, etc. Depending upon their origin and synthesis methods, NPs possess unique physicochemical, structural and morphological characteristics, which are important in a wide variety of applications concomitant to electronic, optoelectronic, optical, electrochemical, environment and biomedical fields. This review provides a comprehensive overview on various physical, chemical and bio-assisted methods largely employed to synthesize and fabricate NPs of varying size, surface characteristics, functionalities and physicochemical behavior. The key applications of nanoparticles have also been discussed.

463 citations