scispace - formally typeset
Search or ask a question
Author

V. Ravikiran

Bio: V. Ravikiran is an academic researcher from National Atmospheric Research Laboratory. The author has contributed to research in topics: Aerosol & Monsoon. The author has an hindex of 4, co-authored 4 publications receiving 102 citations.
Topics: Aerosol, Monsoon, Stratosphere, Tropopause, Lapse rate

Papers
More filters
Journal ArticleDOI
TL;DR: A series of field campaigns using balloon-borne instruments launched from India and Saudi Arabia during the summers 2014-2017 to study the nature, formation and impacts of the Asian Tropopause Aerosol Layer (ATAL) was conducted in this article.
Abstract: We describe and show results from a series of field campaigns using balloon-borne instruments launched from India and Saudi Arabia during the summers 2014-2017 to study the nature, formation and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical and chemical properties of the ATAL, ii) assess its impacts on water vapor and ozone, and iii) understand the role of convection in its formation. In order to address these objectives, we launched 68 balloons from 4 locations, one in Saudi-Arabia and 3 in India, with payload weights ranging from 1.5 kg to 50 kg. We measured meteorological parameters, ozone, water vapor, and aerosol backscatter, concentration, volatility and composition in the Upper Troposphere and Lower Stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 part/cm3 for radius > 75 nm, associated with Scattering Ratio at 940 nm of ~1.9 near the cold point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng/m3. Deep convection was found to influence aerosol loadings 1 km above the cold point tropopause. The BATAL project will continue for the next 3-4 years and the results gathered will be used to formulate a future NASA-ISRO airborne campaign with NASA high altitude aircraft.

78 citations

Journal ArticleDOI
TL;DR: In this article, the formation and maintenances of an elevated aerosol layer, starting from ∼2.5 km and extending up to ∼5.5km noticed is explained using two nearby lidars located in peninsular India.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the nocturnal, seasonal and intra-annual variation of vertical distribution of tropospheric aerosols over two nearby stations Gadanki (13.5oN, 79.2oE) and Tirupati(13.6oN and 79.4oE), were investigated using ground-based Micro Pulse Lidar (MPL) and space-borne LIDar (CALIPSO) systems during 2010-2017.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors employ satellite observations and high-altitude aircraft measurements, combined with atmospheric trajectory simulations and cloud-chamber experiments, to demonstrate the presence of ammonium nitrate particles and also track the source of the ammonia that forms into the particles.
Abstract: The rise of ammonia emissions in Asia is predicted to increase radiative cooling and air pollution by forming ammonium nitrate particles in the lower troposphere. There is, however, a severe lack of knowledge about ammonia and ammoniated aerosol particles in the upper troposphere and their possible effects on the formation of clouds. Here we employ satellite observations and high-altitude aircraft measurements, combined with atmospheric trajectory simulations and cloud-chamber experiments, to demonstrate the presence of ammonium nitrate particles and also track the source of the ammonia that forms into the particles. We found that during the Asian monsoon period, solid ammonium nitrate particles are surprisingly ubiquitous in the upper troposphere from the Eastern Mediterranean to the Western Pacific—even as early as in 1997. We show that this ammonium nitrate aerosol layer is fed by convection that transports large amounts of ammonia from surface sources into the upper troposphere. Impurities of ammonium sulfate allow the crystallization of ammonium nitrate even in the conditions, such as a high relative humidity, that prevail in the upper troposphere. Solid ammonium nitrate particles in the upper troposphere play a hitherto neglected role in ice cloud formation and aerosol indirect radiative forcing. Solid ammonium nitrate particles are formed in the upper troposphere during the Asian monsoons, which bring large amounts of ground ammonia to this altitude, according to integrated analyses of measurements on ammoniated aerosol, together with model simulations.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed state-of-the-art measurements of temperature, water vapor, ozone and aerosol backscatter from two stations on the southern slopes of the Himalayas.
Abstract: . The Asian summer monsoon anticyclone (ASMA) is a major meteorological system of the upper troposphere–lower stratosphere (UTLS) during boreal summer. It is known to contain enhanced tropospheric trace gases and aerosols, due to rapid lifting from the boundary layer by deep convection and subsequent horizontal confinement. Given its dynamical structure, the ASMA represents an efficient pathway for the transport of pollutants to the global stratosphere. A detailed understanding of the thermal structure and processes in the ASMA requires accurate in situ measurements. Within the StratoClim project we performed state-of-the-art balloon-borne measurements of temperature, water vapor, ozone and aerosol backscatter from two stations on the southern slopes of the Himalayas. In total, 63 balloon soundings were conducted during two extensive monsoon-season campaigns, in August 2016 in Nainital, India (29.4 ∘ N, 79.5 ∘ E), and in July–August 2017 in Dhulikhel, Nepal (27.6 ∘ N, 85.5 ∘ E); one shorter post-monsoon campaign was also carried out in November 2016 in Nainital. These measurements provide unprecedented insights into the UTLS thermal structure, the vertical distributions of water vapor, ozone and aerosols, cirrus cloud properties and interannual variability in the ASMA. Here we provide an overview of all of the data collected during the three campaign periods, with focus on the UTLS region and the monsoon season. We analyze the vertical structure of the ASMA in terms of significant levels and layers, identified from the temperature and potential temperature lapse rates and Lagrangian backward trajectories, which provides a framework for relating the measurements to local thermodynamic properties and the large-scale anticyclonic flow. Both the monsoon-season campaigns show evidence of deep convection and confinement extending up to 1.5–2 km above the cold-point tropopause (CPT), yielding a body of air with high water vapor and low ozone which is prone to being lifted further and mixed into the free stratosphere. Enhanced aerosol backscatter also reveals the signature of the Asian tropopause aerosol layer (ATAL) over the same region of altitudes. The Dhulikhel 2017 campaign was characterized by a 5 K colder CPT on average than in Nainital 2016 and a local water vapor maximum in the confined lower stratosphere, about 1 km above the CPT. Data assessment and modeling studies are currently ongoing with the aim of fully exploring this dataset and its implications with respect to stratospheric moistening via the ASMA system and related processes.

79 citations

Journal ArticleDOI
TL;DR: In this article, the decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties.
Abstract: . Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm −1 until the beginning of September and on the order of 1 Mm −1 (0.5–5 Mm −1 ) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µ g m −3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L −1 until the first days in September and afterwards 5–50 L −1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of − 55 ∘ C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35 ∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.

71 citations

Journal ArticleDOI
TL;DR: In situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate.
Abstract: Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere-stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the authors trace back the origin of young air masses at the top of the Asian monsoon anticyclone and of air masses within the tropical pipe during summer 2008.
Abstract: . We have performed backward trajectory calculations and simulations with the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) for two succeeding monsoon seasons using artificial tracers of air mass origin. With these tracers we trace back the origin of young air masses (age months) at the top of the Asian monsoon anticyclone and of air masses within the tropical pipe (6 months age months) during summer 2008. The occurrence of young air masses ( months) at the top of the Asian monsoon anticyclone up to ∼460 K is in agreement with satellite measurements of chlorodifluoromethane (HCFC-22) by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument. HCFC-22 can be considered as a regional tracer for continental eastern Asia and the Middle East as it is mainly emitted in this region. Our findings show that the transport of air masses from boundary layer sources in the region of the Asian monsoon into the tropical pipe occurs in three distinct steps. First, very fast uplift in “a convective range” transports air masses up to 360 K potential temperature within a few days. Second, air masses are uplifted from about 360 K up to 460 K within “an upward spiralling range” within a few months. The large-scale upward spiral extends from northern Africa to the western Pacific. The air masses are transported upwards by diabatic heating with a rate of up to 1–1.5 K per day, implying strong vertical transport above the Asian monsoon anticyclone. Third, transport of air masses occurs within the tropical pipe up to 550 K associated with the large-scale Brewer–Dobson circulation within ∼1 year. In the upward spiralling range, air masses are uplifted by diabatic heating across the (lapse rate) tropopause, which does not act as a transport barrier, in contrast to the extratropical tropopause. Further, in the upward spiralling range air masses from inside the Asian monsoon anticyclone are mixed with air masses convectively uplifted outside the core of the Asian monsoon anticyclone in the tropical adjacent regions. Moreover, the vertical transport of air masses from the Asian monsoon anticyclone into the tropical pipe is weak in terms of transported air masses compared to the transport from the monsoon anticyclone into the northern extratropical lower stratosphere. Air masses from the Asian monsoon anticyclone (India/China) contribute a minor fraction to the composition of air within the tropical pipe at 550 K (6 %), and the major fractions are from Southeast Asia (16 %) and the tropical Pacific (15 %).

60 citations