scispace - formally typeset
Search or ask a question
Author

V. S. Pandey

Bio: V. S. Pandey is an academic researcher from National Institute of Technology Delhi. The author has contributed to research in topics: Dielectric resonator antenna & Antenna (radio). The author has an hindex of 18, co-authored 48 publications receiving 953 citations. Previous affiliations of V. S. Pandey include Kyung Hee University & Allahabad University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of transverse magnetic field as well as thermal radiation on the three-dimensional free convective flow of nanofluid over a linear stretching sheet was studied and it was found that the presence of magnetic field slows down the fluid motion while it enhances the fluid temperature leading to a reduction in heat transfer rate.

135 citations

Journal ArticleDOI
TL;DR: In this paper, a thermal conductivity model of nanofluids involving static and dynamic approach is considered, which signifies hydrodynamic interaction among the Brownian motion induced fluid particles.
Abstract: Background Characterised with augmented heat transport and thermal efficiency, nanofluids are implementable in diversified applications include pharmaceutical industries, hybrid-powered machines, cooling of different appliances, refrigerator, microelectronic, heat exchanger etc. Taking such advantages into mind, physical aspects of entropy optimization and non-linear thermal radiation in Darchy–Forchheimer flow of copper–water nanofluid due to a rotating disk are examined. A new thermal conductivity model of nanofluids involving static and dynamic approach is considered. This model signifies hydrodynamic interaction among the Brownian motion induced fluid particles. The Cattaneo–Christov heat flux theory is taken into account. The second law of thermodynamics is the instrumental for the determination of total entropy generation rate. Methods The system of nonlinear PDEs is converted into system of nonlinear ODEs through favorable transformations. Shooting technique has been applied prospectively to accomplish the desired numerical solution of the transformed equations. Results The behavior of velocity (axial, transverse and tangential) and thermal fields influenced by varied physical parameters is impressed through graphs and numerical tables. Velocity field peters out due to rising porosity parameter as well as volume fraction while thermal field upgrades for higher Biot number and radiation parameter. Significant heat transfer rate is obtained for smaller estimation of radiation parameter. Entropy generation rate and Bejan number exhibit similar trend for radiation parameter and opposite fashion for Reynolds number. Conclusions The diminishing velocity distribution for larger access of porous matrix while elevated temperature distribution for higher temperature parameter (due to nonlinear thermal radiation). Entropy minimization is accomplished for grater estimation of Brinkman and Reynolds numbers.

105 citations

Journal ArticleDOI
TL;DR: In this article, a singly-fed wideband circularly polarized dielectric resonator antenna is proposed for C-band communication with multiple orthogonal modes excited in the antenna structure when excitation is applied through a stair-shaped slot.
Abstract: A singly-fed wideband circularly polarized dielectric resonator antenna is proposed in this communication. Antenna structure contains a rectangular and two half split cylindrical dielectric resonators. Multiple orthogonal modes are excited in the antenna structure when excitation is applied through a stair-shaped slot. Measured results show that antenna provides wider 3-dB axial ratio and impedance bandwidths of 41.01% and 49.67%, respectively. Proposed antenna can be utilized in C-band applications.

94 citations

Journal ArticleDOI
TL;DR: The aspect ratio of graphene patch and physical parameters of the antenna are selected for obtaining the single mode operation with the resonance of T M 12 , mode and the utilization of the graphene material provides the flexibility in tuning the antenna response.

66 citations


Cited by
More filters
01 Jan 2016
TL;DR: The design of analog cmos integrated circuits is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading design of analog cmos integrated circuits. Maybe you have knowledge that, people have look hundreds times for their favorite novels like this design of analog cmos integrated circuits, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their laptop. design of analog cmos integrated circuits is available in our book collection an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the design of analog cmos integrated circuits is universally compatible with any devices to read.

912 citations

01 Dec 2007
TL;DR: An estimate of the energy carried by the waves that are spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfvén waves may carry sufficient energy.
Abstract: Alfven waves, transverse incompressible magnetic oscillations, have been proposed as a possible mechanism to heat the Sun's corona to millions of degrees by transporting convective energy from the photosphere into the diffuse corona. We report the detection of Alfven waves in intensity, line-of-sight velocity, and linear polarization images of the solar corona taken using the FeXIII 1074.7-nanometer coronal emission line with the Coronal Multi-Channel Polarimeter (CoMP) instrument at the National Solar Observatory, New Mexico. Ubiquitous upward propagating waves were seen, with phase speeds of 1 to 4 megameters per second and trajectories consistent with the direction of the magnetic field inferred from the linear polarization measurements. An estimate of the energy carried by the waves that we spatially resolved indicates that they are too weak to heat the solar corona; however, unresolved Alfven waves may carry sufficient energy.

562 citations

01 May 1997
TL;DR: In this paper, a method for reconstructing force-free magnetic fields from their boundary values, based on minimizing the global departure of an initial field from a force free and solenoidal state, is presented.
Abstract: A new method for reconstructing force-free magnetic fields from their boundary values, based on minimizing the global departure of an initial field from a force-free and solenoidal state, is presented. The method is tested by application to a known nonlinear solution. We discuss the obstacles to be overcome in the application of this method to the solar case: the reconstruction of force-free fields in the corona from measurements of the vector magnetic field in the low atmosphere.

289 citations

Journal ArticleDOI
TL;DR: In this article, the outer atmosphere of the Sun, and many other stars, reached temperatures orders of magnitude higher than their surface temperatures, and the mechanisms that cause these higher temperatures were determined.
Abstract: Determining the heating mechanism (or mechanisms) that causes the outer atmosphere of the Sun, and many other stars, to reach temperatures orders of magnitude higher than their surface temperatures...

271 citations