scispace - formally typeset
Search or ask a question
Author

В.В. Решетников

Bio: В.В. Решетников is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 2 citations.

Papers
More filters

Cited by
More filters
01 Jan 2003
TL;DR: It is demonstrated that the adaptor protein, termed Homer, facilitates a physical association between TRPC1 and the IP(3)R that is required for the TRP channel to respond to signals.
Abstract: Receptor signaling at the plasma membrane often releases calcium from intracellular stores. For example, inositol triphosphate (IP3) produced by receptor-coupled phospholipase C activates an intracellular store calcium channel, the IP(3)R. Conversely, stores can induce extracellular calcium to enter the cell through plasma membrane channels, too. How this "reverse" coupling works was unclear, but store IP(3)Rs were proposed to bind and regulate plasma membrane TRP cation channels. Here, we demonstrate that the adaptor protein, termed Homer, facilitates a physical association between TRPC1 and the IP(3)R that is required for the TRP channel to respond to signals. The TRPC1-Homer-IP(3)R complex is dynamic and its disassembly parallels TRPC1 channel activation. Homer's action depends on its ability to crosslink and is blocked by the dominant-negative immediate early gene form, H1a. Since H1a is transcriptionally regulated by cellular activity, this mechanism can affect both short and long-term regulation of TRPC1 function.

29 citations

Journal Article
TL;DR: In this article, the authors examined whether Homer1a is necessary for Pavlovian cued fear conditioning, whether it is downstream of BDNF-TrkB activation, and whether this pathway utilizes histone modifications for activity-dependent transcriptional regulation.
Abstract: The consolidation of conditioned fear involves upregulation of genes necessary for long-term memory formation. An important question remains as to whether this results in part from epigenetic regulation and chromatin modulation. We examined whether Homer1a, which is required for memory formation, is necessary for Pavlovian cued fear conditioning, whether it is downstream of BDNF-TrkB activation, and whether this pathway utilizes histone modifications for activity-dependent transcriptional regulation. We initially found that Homer1a knock-out mice exhibited deficits in cued fear conditioning (5 tone-shock presentations with 70 dB, 6 kHz tones and 0.5 s, 0.6 mA footshocks). We then demonstrated that: (1) Homer1a mRNA increases after fear conditioning in vivo within both amygdala and hippocampus of wild-type mice; (2) it increases after BDNF application to primary hippocampal and amygdala cultures in vitro; and (3) these increases are dependent on transcription and MAPK signaling. Furthermore, using chromatin immunoprecipitation we found that both in vitro and in vivo manipulations result in decreases in Homer1 promoter H3K9 methylation in amygdala cells but increases in Homer1 promoter H3 acetylation in hippocampal cells. However, no changes were observed in H4 acetylation or H3K27 dimethylation. Inhibition of histone deacetylation by sodium butyrate enhanced contextual but not cued fear conditioning and enhanced Homer1 H3 acetylation in the hippocampus. These data provide evidence for dynamic epigenetic regulation of Homer1a following BDNF-induced plasticity and during a BDNF-dependent learning process. Furthermore, upregulation of this gene may be regulated through distinct epigenetic modifications in the hippocampus and amygdala.

5 citations