scispace - formally typeset
Search or ask a question
Author

V. Velmurugan

Bio: V. Velmurugan is an academic researcher from VIT University. The author has contributed to research in topics: Graphene & Oxide. The author has an hindex of 12, co-authored 26 publications receiving 1159 citations.

Papers
More filters
Proceedings ArticleDOI
24 Jul 2013
TL;DR: In this paper, the oxide thickness is compared for both the oxidation processes after different oxidation cycles and the percentage oxide thickness was also estimated and the oxide was found to grow more into the substrate with time and number of cycles.
Abstract: The oxide thickness is of great concern today. The basic idea is to grow SiO2 layer on Silicon. The oxide is grown on intrinsic silicon substrate by thermal oxidation i.e., wet oxidation and dry oxidation. The thickness is compared for both the oxidation processes after different oxidation cycles. The capacitance per unit length is also calculated for the oxide growth in above. The percentage oxide thickness is also estimated and the oxide is found to grow more into the substrate with time and number of cycles.

1 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with two dimensional heat conduction analysis and the simulation of the same on silicon and germanium surfaces and report about the dependency of the thermal diffusion length on the homogeneity of the formed structures.

1 citations

Journal ArticleDOI
19 Nov 2010-Health
TL;DR: The simulated perforated rectangular cantilever beam with IgG antibody is a more promising model for the fabrication of a sensor for the estimation of highly motile Pseudomonas aeruginosa and Treponema pallidum.
Abstract: Micro fabricated and multilayered perforated cantilever beam immunosensor was modeled using CoventorWare for the estimation of bacterial antigens of Bacillus Anthrax, Pseudomonas aeruginosa, Coryne Bacterium Diptheria and Treponema pallidum. A rectangular cantilever beam with perforations was simulated with dimensions as length-200 µm, width-10 µm and thickness-0.5 µm. Each perforation is rectangular with length-10 µm, width-5 µm and thickness-0.5 µm. The theoretical and FEM simulations were carried out with five immunoglobulin antibodies, IgA, IgD, IgE, IgG and IgM for the estimation of bacterial antigens. The effect of perforation in cantilever beam and molecular size of antibody and antigen on the performance of the sensor has been studied. The cantilever beam without perforation showed a deflection of 1.8 e + 02 µm whereas the cantilever beam with perforation showed an increase deflection of 1.9 e + 02 µm. With IgG, the difference between analytical and simulation values is positive and low especially with low molecular weight antigens Pseudomonas aeruginosa and Treponema pallidum. The low molecular weight IgG influences the antigen-antibody interaction more fvourably. The simulated perforated rectangular cantilever beam with IgG antibody is a more promising model for the fabrication of a sensor for the estimation of highly motile Pseudomonas aeruginosa and Treponema pallidum.

1 citations

Journal ArticleDOI
TL;DR: In this article, a rectangular model for cantilever-based piezoelectric energy harvester is proposed with different designs like two layer, two layer with proof mass, four layer and four layer with proven mass designed with dimensions as 50m×50μm×1μm for each layer.
Abstract: Vibrations can be a good source of energy and can be harvested and utilized by simple design and fabrication using the MEMS technology. Energy harvesting provides unending sources of energy for low-power electronics devices where the use of batteries is not feasible. Piezoelectric energy harvesters are widely considered because of their compact design, compatibility to MEMS devices and ability to respond to a wide range of frequencies freely available in the environment. In this project, a rectangular model for cantilever-based piezoelectric energy harvester is proposed with different designs like two layer, two layer with proof mass, four layer and four layer with proof mass designed with dimensions as 50μm×50μm×1μm for each layer using COMSOL Multiphysics 5.0. Simulation results were obtained using silicon as substrate, aluminium as electrodes and PZT-5H and ZnO as piezoelectric materials and the respective stress and voltages were obtained by applying a force acting on foot, train, roller coaster and a general value of 10N/m2 on top of the cantilever. The effects of varying geometrical dimensions of the device were also investigated.

1 citations

Proceedings ArticleDOI
24 Oct 2011
TL;DR: In this paper, the spectral characteristics of photodarkening of Yb doped fibers with different concentration and host composition have been presented in order to investigate how charge transfer transition acts as the mechanism behind photoderarkening effect.
Abstract: The spectral characteristics of photodarkening of Yb doped fibers with different concentration and host composition have been presented in order to investigate how Charge Transfer Transition acts as the mechanism behind Photodarkening effect.

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes) is presented.

1,053 citations

Journal ArticleDOI
TL;DR: In this article, various nanomaterials have been reviewed which have been used for water decontamination and a review has been given on adsorption, photocatalytic and antibacterial activity of nanommaterials.

910 citations

Journal Article
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

881 citations

Journal ArticleDOI
TL;DR: In this article, the toxicity mechanisms of various metal ions and their relationship towards the induction of oxidative stress have been summarized, and electrochemical biosensors employed in the detection of metal ions with various interfaces have been highlighted.
Abstract: Most of the metal ions are carcinogens and lead to serious health concerns by producing free radicals. Hence, fast and accurate detection of metal ions has become a critical issue. Among various metal ions arsenic, cadmium, lead, mercury and chromium are considered to be highly toxic. To detect these metal ions, electrochemical biosensors with interfaces such as microorganisms, enzymes, microspheres, nanomaterials like gold, silver nanoparticles, CNTs, and metal oxides have been developed. Among these, nanomaterials are considered to be most promising, owing to their strong adsorption, fast electron transfer kinetics, and biocompatibility, which are very apt for biosensing applications. The coupling of electrochemical techniques with nanomaterials has enhanced the sensitivity, limit of detection, and robustness of the sensors. In this review, toxicity mechanisms of various metal ions and their relationship towards the induction of oxidative stress have been summarized. Also, electrochemical biosensors employed in the detection of metal ions with various interfaces have been highlighted.

730 citations