scispace - formally typeset
Search or ask a question

Showing papers by "Vadim G. Kessler published in 2015"


Journal ArticleDOI
TL;DR: An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium-ion (Li-ion) storage performance is derived for the first time through hydrolysis and thermal self-assembly of the solid alkoxide precursor as discussed by the authors.
Abstract: An ordered network of interconnected tin oxide (SnO2) nanoparticles with a unique 3D architecture and an excellent lithium-ion (Li-ion) storage performance is derived for the first time through hydrolysis and thermal self-assembly of the solid alkoxide precursor. Mesoporous anodes composed of these ≈9 nm-sized SnO2 particles exhibit substantially higher specific capacities, rate performance, coulombic efficiency, and cycling stabilities compared with disordered nanoparticles and commercial SnO2. A discharge capacity of 778 mAh g–1, which is very close to the theoretical limit of 781 mAh g–1, is achieved at a current density of 0.1 C. Even at high rates of 2 C (1.5 A g–1) and 6 C (4.7 A g–1), these ordered SnO2 nanoparticles retain stable specific capacities of 430 and 300 mAh g–1, respectively, after 100 cycles. Interconnection between individual nanoparticles and structural integrity of the SnO2 electrodes are preserved through numerous charge–discharge process cycles. The significantly better electrochemical performance of ordered SnO2 nanoparticles with a tap density of 1.60 g cm–3 is attributed to the superior electrode/electrolyte contact, Li-ion diffusion, absence of particle agglomeration, and improved strain relaxation (due to tiny space available for the local expansion). This comprehensive study demonstrates the necessity of mesoporosity and interconnection between individual nanoparticles for improving the Li-ion storage electrochemical performance of SnO2 anodes.

149 citations


Journal ArticleDOI
TL;DR: New efficient drug delivery systems based on cellulose nanofiber-titania nanocomposites grafted with three different types of model drugs were successfully synthesized and displayed distinctly different controlled long-term release profiles.
Abstract: In this work, new efficient drug delivery systems based on cellulose nanofiber–titania nanocomposites grafted with three different types of model drugs such as diclofenac sodium, penicillamine-D and phosphomycin were successfully synthesized and displayed distinctly different controlled long-term release profiles. Three different methods of medicine introduction were used to show that various interactions between TiO2 and drug molecules could be used to control the kinetics of long-term drug release. All synthesis reactions were carried out in aqueous media. The morphology, chemical structure and properties of the obtained materials were characterized by SEM, TEM and AFM microscopy, nanoparticle tracking analysis, X-ray diffraction, and TGA analysis. According to FT-IR and UV-Vis spectroscopy data, the titania binds to cellulose nanofibers via formation of ester bonds and to drug molecules via formation of surface complexes. The drug release kinetics was studied in vitro for diclofenac sodium and penicillamine-D spectrophotometrically and for phosphomycin using a radiolabeling analysis with 33P-marked ATP as a model phosphate-anchored biomolecule. The results demonstrated that the obtained nanocomposites could potentially be applied in transdermal drug delivery for anesthetics, analgesics and antibiotics.

89 citations


Journal ArticleDOI
TL;DR: Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.
Abstract: A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

79 citations


Journal ArticleDOI
TL;DR: It is suggested that the obtained nanocomposites are promising materials for the development of potentially useful antimicrobial patches, showing enhanced stability especially for the TC loaded materials.
Abstract: Nanocomposite dermal drug delivery systems based on cellulose nanofibers with grafted titania nanoparticles loaded by two antibiotic medicines from different classes, i.e. tetracycline (TC) and phosphomycin (Phos), were successfully produced by a “green chemistry” approach in aqueous media. The influence of a different surface binding mechanism between the drug molecule and modified cellulose nanofibers on the release of the drug and, as a result, on antimicrobial properties against common pathogens Gram-positive, Staphylococcus aureus and Gram-negative Escherichia coli was investigated. The disk diffusion method and broth culture tests using varying concentrations of drugs loaded to nanocomposites were carried out to investigate the antibacterial effects. The influence of UV irradiation on the stability of the obtained nanocomposites and their antibacterial properties after irradiation were also investigated, showing enhanced stability especially for the TC loaded materials. These findings suggest that the obtained nanocomposites are promising materials for the development of potentially useful antimicrobial patches.

49 citations


Journal ArticleDOI
TL;DR: Unexpectedly big differences in coordination numbers and binding mode of IDA along with distinct analogies in packing of the ligand molecules in the obtained 2D-coordination polymer structures provided valuable insights into possible reasons for the observed selectivity.
Abstract: The binding and release of trivalent rare earth element (REE) cations (Dy3+, Nd3+ and La3+) from solutions by a new fully characterized magnetic nano adsorbent material, consisting of iminodiacetic acid ligand (H2IDA) grafted onto SiO2 covered γ-Fe2O3 nanoparticles, was investigated. The nano adsorbent revealed a slightly higher capacity towards heavier REE and appreciable selectivity, especially on desorption. It was found that the composition of the surface complex was RE3+ : L = 1 : 1. The complexation of the molecular H2IDA with RE3+ in this ratio under non-basic conditions was therefore investigated by X-ray crystallography to produce relevant molecular models. Unexpectedly big differences in coordination numbers and binding mode of IDA along with distinct analogies in packing of the ligand molecules in the obtained 2D-coordination polymer structures provided valuable insights into possible reasons for the observed selectivity.

42 citations


Journal ArticleDOI
TL;DR: In this paper, a single crystal X-ray study of ligand-functionalized titanium alkoxide complexes was performed and the theoretical loading capacity of hybrid organic-inorganic adsorbents bearing phosphonate ligand monolayers as active functions was obtained.
Abstract: The insight into the molecular aspects of ligand grafting and potential maximal capacity of hybrid organic–inorganic adsorbents bearing phosphonate ligand monolayers as active functions was obtained by single crystal X-ray studies of ligand-functionalized titanium alkoxide complexes. The attachment of molecules occurs generally in the tripodal vertical fashion with the minimal distance between them being about 8.7 A, resulting in 0.19 nm2 as the minimal surface area per function. In the present experimental work the theoretical loading capacity could almost be achieved for functionalization of mesoporous nanorods of anatase with imino-bis-methylphosphonic acid (IMPA, NH(CH2PO3H2)2) or aminoethylphosphonic acid (AEPA, H2NC2H4PO3H2). The products had the same morphology as the starting material, as was established by SEM and optical microscopy. The size and structure of the individual nanoparticles of the constituting inorganic component of the material were preserved and practically unchanged through the surface modification, as established by powder XRD and EXAFS studies. The surface area of the inorganic–organic hybrids decreased somewhat from the initial ∼250 m2 g−1, on adsorption of AEPA (0.21 mmol g−1) to ∼240 m2 g−1, and on adsorption of IMPA (0.17 mmol g−1) to ∼190 m2 g−1. The ligands were bound effectively to the surface according to TGA, EDS and FTIR analyses and remained in the mono-deprotonated form. The produced hybrid adsorbents had for the selected pH (3.5) high capacities towards adsorption of Rare Earth Element (REE) cations, but with equilibria achieved relatively slowly. The composition of the surface complexes was determined as M : L = 1 : 1 for IMPA, but varied for the AEPA from 1 : 3 to 1 : 1 dependent on the REE, which can be interpreted in terms of charge compensation as the major driving force behind binding. The cation desorption in strongly acidic media for recuperation of the adsorbed REE and the relative capacity of the re-used adsorbent have been quantified.

29 citations


Journal ArticleDOI
TL;DR: This is one of the first reports aimed at describing a new method for the targeted formation of crystalline MOFs and coordination polymers, but also at demonstrating the use of Zn-based MOFs as potential drug delivery materials, with highly effective adsorption of l-histidine given herein as an example.

21 citations


Journal ArticleDOI
TL;DR: In this paper, a new approach for the regulation of the micro-and nanostructure of the composites as catalytic materials was proposed, exploiting inorganic seeds for the control of morphology for the produced nanostructures.
Abstract: Mesoporous alumina and alumina–sodium aluminate composites were obtained by sol–gel method using polyethyleneimine as template. New approach for the regulation of the micro- and nanostructure of the composites as catalytic materials was proposed, exploiting inorganic seeds for the control of morphology for the produced nanostructures. Composition and temperature window for preventing the leaching of sodium aluminate in the course of reaction and thus drastically improving the catalytic activity has been identified. Structure and phase composition of the thus obtained catalytic materials were characterized using X-ray diffraction, N2 adsorption/desorption, FTIR spectra, scanning electron microscopy, and thermal analysis. New type of catalyst has shown high efficiency in the vegetable oil transesterification process under mild conditions opening prospects for small-scale production of reasonably good-quality biodiesel fuel. Dissolving sodium aluminate in the alumina matrix at proper compositions and under controlled temperatures permits to drastically decrease the leaching of aluminate and maintain its high catalytic activity in transesterification of vegetable oils with methanol.

11 citations


Journal ArticleDOI
TL;DR: In this article, the tetrahedrally-shaped crystals of Zr(Bisacac)2 and Hf(BISACAC)2, M(IV) derivatives of bisacetylacetone (tetra-acetyl-ethane), were obtained in quantitative yield by a simple and reproducible synthetic procedure.

5 citations


Book ChapterDOI
21 Aug 2015

4 citations