scispace - formally typeset
Search or ask a question
Author

Vadim G. Kessler

Bio: Vadim G. Kessler is an academic researcher from Swedish University of Agricultural Sciences. The author has contributed to research in topics: Alkoxide & Nanoparticle. The author has an hindex of 39, co-authored 284 publications receiving 5262 citations. Previous affiliations of Vadim G. Kessler include Bar-Ilan University & Center for Advanced Materials.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the reactions of N,N′-bis(salicylidene)propane-1,3-diamine (salpropH2) and its substituted derivatives with Ga(acac)3 afforded the complexes [Ga(acAC)(salprop)]·0.5H2O (1), [Ga (acac)(5ClSalprop)] (2), [ga(ac ac)(5Rsalprop2− ligand and one bidentate chelate acac+ ligand), in high yields.

5 citations

Journal ArticleDOI
TL;DR: In this paper, a bimetallic complex Ba 2 Sn 2 (thd) 4 (O i Pr) 8 (i PrOH) 2 (1) was obtained with quantitative yield by interaction of Sn(O i pr) 4 with 1 1/eq. of Ba(thd)-2 produced in situ in toluene.

5 citations

Journal ArticleDOI
TL;DR: In this article, the tetrahedrally-shaped crystals of Zr(Bisacac)2 and Hf(BISACAC)2, M(IV) derivatives of bisacetylacetone (tetra-acetyl-ethane), were obtained in quantitative yield by a simple and reproducible synthetic procedure.

5 citations

Book ChapterDOI
01 Jan 2013
TL;DR: In this paper, modern approaches in the synthesis of metal alkoxides, with a special focus on molecular structure and reactivity, are summarized, and a brief but up-to-date presentation of the reaction mechanisms are given.
Abstract: This chapter summarizes modern approaches in the synthesis of metal alkoxides, provides an overview of their physical and chemical properties, with a special focus on molecular structure and reactivity, and gives a brief but up-to-date presentation of the reaction mechanisms in the synthesis of inorganic materials from metal alkoxides as precursors (alkoxosynthesis). A critical overview of molecular precursor approaches exploiting homo- and heteroleptic alkoxide complexes is provided, explaining the role of heteroligands in nucleation and subsequent growth of the resulting nanostructured materials. This chapter also provides a brief summary of other principal applications of metal alkoxides, such as homogeneous catalysts and molecular magnets, with a special focus on the synthesis and structure of these functional molecules.

5 citations

Journal ArticleDOI
TL;DR: In this article, a family of exceptionally thermally stable [Ni8] cages is reported, each being templated by a rare η3:η3-μ6-O22− species produced by dioxygen activation, where the reducing agent for the O2 reduction appears to be the ligand used in the reaction mixtures, which was found within the nickel cages in its oxidized form.
Abstract: A family of exceptionally thermally stable [Ni8] cages is reported, each being templated by a rare η3:η3:μ6-O22− species produced by dioxygen activation, where the reducing agent for the O2 reduction appears to be the ligand used in the reaction mixtures, which was found within the nickel cages in its oxidized form.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties ofatomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles.
Abstract: Colloidal nanoparticles are being intensely pursued in current nanoscience research. Nanochemists are often frustrated by the well-known fact that no two nanoparticles are the same, which precludes the deep understanding of many fundamental properties of colloidal nanoparticles in which the total structures (core plus surface) must be known. Therefore, controlling nanoparticles with atomic precision and solving their total structures have long been major dreams for nanochemists. Recently, these goals are partially fulfilled in the case of gold nanoparticles, at least in the ultrasmall size regime (1–3 nm in diameter, often called nanoclusters). This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties of atomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles (such as the s...

2,144 citations

Journal ArticleDOI
TL;DR: This work focuses on the characterization of the phytochemical components of Lactide ROP and their role in the regulation of cell reprograming.
Abstract: 23 Stereocontrol of Lactide ROP 6164 231 Isotactic Polylactides 6164 232 Syndiotactic Polylactides 6166 233 Heterotactic Polylactides 6166 3 Anionic Polymerization 6166 4 Nucleophilic Polymerization 6168 41 Mechanistic Considerations 6168 42 Catalysts 6169 421 Enzymes 6169 422 Organocatalysts 6169 43 Stereocontrol of Lactide ROP 6170 44 Depolymerization 6170 5 Cationic Polymerization 6170 6 Conclusion and Perspectives 6171 7 Acknowledgments 6173 8 References and Notes 6173

2,014 citations

Journal ArticleDOI
TL;DR: Nonlinear Optical Characterizations of Multiphoton Active Materials 1282 5.2.1.
Abstract: 4. Survey of Novel Multiphoton Active Materials 1257 4.1. Multiphoton Absorbing Systems 1257 4.2. Organic Molecules 1257 4.3. Organic Liquids and Liquid Crystals 1259 4.4. Conjugated Polymers 1259 4.4.1. Polydiacetylenes 1261 4.4.2. Polyphenylenevinylenes (PPVs) 1261 4.4.3. Polythiophenes 1263 4.4.4. Other Conjugated Polymers 1265 4.4.5. Dendrimers 1265 4.4.6. Hyperbranched Polymers 1267 4.5. Fullerenes 1267 4.6. Coordination and Organometallic Compounds 1271 4.6.1. Metal Dithiolenes 1271 4.6.2. Pyridine-Based Multidentate Ligands 1272 4.6.3. Other Transition-Metal Complexes 1273 4.6.4. Lanthanide Complexes 1275 4.6.5. Ferrocene Derivatives 1275 4.6.6. Alkynylruthenium Complexes 1279 4.6.7. Platinum Acetylides 1279 4.7. Porphyrins and Metallophophyrins 1279 4.8. Nanoparticles 1281 4.9. Biomolecules and Derivatives 1282 5. Nonlinear Optical Characterizations of Multiphoton Active Materials 1282

1,864 citations

Journal ArticleDOI
TL;DR: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz .
Abstract: Chemistries that Facilitate Nanotechnology Kim E. Sapsford,† W. Russ Algar, Lorenzo Berti, Kelly Boeneman Gemmill,‡ Brendan J. Casey,† Eunkeu Oh, Michael H. Stewart, and Igor L. Medintz*,‡ †Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States ‡Center for Bio/Molecular Science and Engineering Code 6900 and Division of Optical Sciences Code 5611, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States College of Science, George Mason University, 4400 University Drive, Fairfax, Virginia 22030, United States Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States Sotera Defense Solutions, Crofton, Maryland 21114, United States

1,169 citations