Author

# Vadim V. Silberschmidt

Other affiliations: University of Rhode Island, Universities UK, Russian Academy of Sciences ...read more

Bio: Vadim V. Silberschmidt is an academic researcher from Loughborough University. The author has contributed to research in topics: Machining & Materials science. The author has an hindex of 44, co-authored 543 publications receiving 8619 citations. Previous affiliations of Vadim V. Silberschmidt include University of Rhode Island & Universities UK.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, a review of modeling approaches used for nonlinear crack-wave interactions is presented, including models of crack-induced elastic, thermo-elastic and dissipative nonlinearities.

248 citations

••

TL;DR: In this article, the effect of cutting parameters on drilling thrust force and torque during the machining process was studied both experimentally and numerically. And a 3D finite element model of drilling in a composite laminate, accounting for complex kinematics at the drill-workpiece interface is developed.

Abstract: Drilling carbon fibre reinforced plastics (CFRPs) is typically cumbersome due to high structural stiffness of the composite and low thermal conductivity of plastics. Resin-rich areas between neighbouring plies in a laminate are prone to drilling-induced delamination that compromises structural integrity. Appropriate selection of drilling parameters is believed to mitigate damage in CFRPs. In this context, we study the effect of cutting parameters on drilling thrust force and torque during the machining process both experimentally and numerically. A unique three-dimensional (3D) finite element model of drilling in a composite laminate, accounting for complex kinematics at the drill-workpiece interface is developed. Cohesive zone elements are used to simulate interply delamination in a composite. Experimental quantification of drilling-induced damage is performed by means of X-ray micro computed tomography. The developed numerical model is shown to agree reasonably well with the experiments. The model is used to predict optimal drilling parameters in carbon/epoxy composites.

233 citations

••

TL;DR: Ulasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD), and it is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision.

191 citations

••

TL;DR: In this article, the authors investigated the nanoscale interfacial evolution in Cu-Al wire bonds during isothermal annealing from 175°C to 250°C, where the kinetics obey a parabolic growth law until complete consumption of the Al pad.

188 citations

••

TL;DR: The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state, cutting forces and contact conditions at the workpiece/tool interface.

159 citations

##### Cited by

More filters

01 May 1993

TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.

Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

•

TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.

Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

••

31 Oct 2001

TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.

Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

••

01 Jan 1976

TL;DR: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in Solubility with rise in temperature.

Abstract: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in solubility with rise in temperature.

1,573 citations