scispace - formally typeset
Search or ask a question
Author

Vadim V. Silberschmidt

Bio: Vadim V. Silberschmidt is an academic researcher from Loughborough University. The author has contributed to research in topics: Machining & Materials science. The author has an hindex of 44, co-authored 543 publications receiving 8619 citations. Previous affiliations of Vadim V. Silberschmidt include University of Rhode Island & Universities UK.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a model of bone cutting is presented that idealises cortical bone as an equivalent homogeneous isotropic material. And the maximum temperature in the bone was found in the region where the thin bone layer (chip) was separated from the bone sample that was adjacent to the tool rake (i.e., front face of the tool).
Abstract: Bone cutting is widely used in orthopaedic, dental and neuro surgeries and is a technically demanding surgical procedure. One of the major concerns in current research is thermal damage of the bone tissue caused by high-speed power tools, which occurs when temperature rises above a certain threshold value for the tissue known as bone necrosis. Hence, optimisation of cutting parameters is necessary to avoid thermal necrosis and improve current orthopaedic surgical procedures. In this study a thermo-mechanical finite element model of bone cutting is presented that idealises cortical bone as an equivalent homogeneous isotropic material. The maximum temperature in the bone was found in the region where the thin bone layer (chip) was separated from the bone sample that was adjacent to the tool rake (i.e., front face of the tool). Temperature values were calculated with the model and compared for cutting conditions with and without a coolant (irrigation). The influence of bone's thermal properties on the depth of thermal necrosis is discussed. The simulated cutting temperatures were compared with experimental results obtained in bone drilling tests. Simulations of the cutting processes identified critical variables and cutting parameters affecting thermo-mechanics of bone cutting.

49 citations

Journal ArticleDOI
TL;DR: In this article, the effect of ultrasonically assisted turning (UAT) on surface roughness was investigated for a broad range of metals and alloys, from copper, aluminium and stainless steel to Ni-and Ti-based alloys.

49 citations

Journal ArticleDOI
TL;DR: In this paper, a novel machining technique known as Ultrasonically Assisted Turning (UAT) is shown to dramatically improve machining of these intractable alloys, which is capable to increase greatly the MRR when compared to CT with an improved surface quality of the turned work-piece.

49 citations

Journal ArticleDOI
TL;DR: In this article, a transparent, anti-icing, bio-based epoxy coating was developed for room-temperature processing, which exhibited good water repellency and ice-adhesion strength as low as 50kPa at −20°.

48 citations

Journal ArticleDOI
TL;DR: Higher levels of the drilling speed and feed rate were found responsible for generating temperatures above a thermal threshold level in both types of drilling, and UAD may be investigated further to explore its benefits over the existing CD techniques.
Abstract: BACKGROUND: Bone drilling is widely used in orthopaedics, dental and neurosurgeries for repair and fixation purposes. One of the major concerns in drilling of bone is thermal necrosis that may seriously affect healing at interfaces with fixtures and implants. Ultrasonically-assisted drilling (UAD) is recently introduced as alternative to conventional drilling (CD) to minimize invasiveness of the procedure. OBJECTIVE: This paper studies temperature rise in bovine cortical bone drilled with CD and UAD techniques and their comparison using infrared thermography. METHODS: A parametric investigation was carried out to evaluate effects of drilling conditions (drilling speed and feed rate) and parameters of ultrasonic vibration (frequency and amplitude) on the temperature elevation in bone. RESULTS: Higher levels of the drilling speed and feed rate were found responsible for generating temperatures above a thermal threshold level in both types of drilling. UAD with frequency below 20 kHz resulted in lower temperature compared to CD with the same drilling parameters. The temperatures generated in cases with vibration frequency exceeding 20 kHz were significantly higher than those in CD for the range of drilling speeds and feed rates. The amplitude of vibration was found to have no significant effect on bone temperature. CONCLUSIONS: UAD may be investigated further to explore its benefits over the existing CD techniques.

48 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Book ChapterDOI
01 Jan 1976
TL;DR: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in Solubility with rise in temperature.
Abstract: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in solubility with rise in temperature.

1,573 citations