scispace - formally typeset
Search or ask a question
Author

Vadim V. Silberschmidt

Bio: Vadim V. Silberschmidt is an academic researcher from Loughborough University. The author has contributed to research in topics: Machining & Materials science. The author has an hindex of 44, co-authored 543 publications receiving 8619 citations. Previous affiliations of Vadim V. Silberschmidt include University of Rhode Island & Universities UK.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors deal with statistical features of a distribution of carbon fibres in a transversal cross-sectional area in a unidirectional composite with epoxy matrix, based on various approaches used to quantify its microscopic randomness.
Abstract: Composite materials demonstrate a considerable extent of heterogeneity. A non-uniform spatial distribution of reinforcement results in variations of local properties of fibrous laminates. This non-uniformity not only affects effective properties of composite materials but is also a crucial factor in initiation and development of damage and fracture processes that are also spatially non-uniform. Such randomness in microstructure and in failure evolution is responsible for non-uniform distributions of stresses in composite specimens even under externally uniform loading, resulting, for instance, in a random distribution of matrix cracks in cross-ply laminates. The paper deals with statistical features of a distribution of carbon fibres in a transversal cross-sectional area in a unidirectional composite with epoxy matrix, based on various approaches used to quantify its microscopic randomness. A random character of the fibres’ distribution results in fluctuations of local elastic moduli in composites, the bounds of which depend on the characteristic length scale. A lattice model to study damage and fracture evolution in laminates, linking randomness of microstructure with macroscopic properties, is discussed. An example of simulations of matrix cracking in a carbon fibre/epoxy cross-ply laminate is given.

39 citations

Journal ArticleDOI
TL;DR: In this article, a stacking-sequence optimization method for composite laminates using a multicriteria objective function with buckling, strength and continuity constraint subject to in-plane normal compressive loads is presented.

39 citations

Journal ArticleDOI
TL;DR: In this article, a combination of experimental material characterisation, microscopic damage analysis and numerical simulations was used to study the flexural loading of woven carbon fabric-reinforced polymer laminates.
Abstract: In this paper, flexural loading of woven carbon fabric-reinforced polymer laminates is studied using a combination of experimental material characterisation, microscopic damage analysis and numerical simulations. Mechanical behaviour of these materials was quantified by carrying out tensile and large-deflection bending tests. A substantial difference was found between the materials' tensile and flexural properties due to a size effect and stress stiffening of thin laminates. A digital image-correlation technique capable of full-field strain-measurement was used to determine in-plane shear properties of the studied materials. Optical microscopy and micro-computed tomography were employed to investigate deformation and damage mechanisms in the specimens fractured in bending. Various damage modes such as matrix cracking, delaminations, tow debonding and fibre fracture were observed in these microstructural studies. A two-dimensional finite-element (FE) model was developed to analyse the onset and propagation of inter-ply delamination and intra-ply fabric fracture as well as their coupling in the fractured specimen. The developed FE model provided a correct prediction of the material's flexural response and successfully simulated the sequence and interaction of damage modes observed experimentally.

39 citations

Journal ArticleDOI
TL;DR: In this article, various damage modes in woven carbon fabric reinforced polymer (CFRP) laminates are studied using experimental material characterisation and numerical simulations. And the results of simulations show good agreement with experimental data, thus demonstrating that the proposed methodology can be used for simulations of discrete damage mechanisms and their interaction during the ultimate fracture of composites in bending.

38 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-scale computational approach was explored to capture main damage modes of a braided textile composite; simulations were supported by experimental verification, and the extent of delamination was quantified by applying surface-and element-based cohesive zone models.

38 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Book ChapterDOI
01 Jan 1976
TL;DR: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in Solubility with rise in temperature.
Abstract: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in solubility with rise in temperature.

1,573 citations