scispace - formally typeset
Search or ask a question
Author

Vadim V. Silberschmidt

Bio: Vadim V. Silberschmidt is an academic researcher from Loughborough University. The author has contributed to research in topics: Machining & Materials science. The author has an hindex of 44, co-authored 543 publications receiving 8619 citations. Previous affiliations of Vadim V. Silberschmidt include University of Rhode Island & Universities UK.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the creep component of deformation and deformation due to thermal expansion is introduced into the constitutive equation to capture the major mechanisms of the mechanical behaviour of a SnAgCu solder micro-joint used in electronics.

17 citations

Journal ArticleDOI
TL;DR: In this article, a mesoscale modeling strategy for carbon-fibre-reinforced polymer (CFRP) composite was developed to predict deformation behavior and resultant damage.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a new microscale design approach, CONVEX, based on the idea of CONtinuously Varying EXtrusion widths of deposited filaments in material extrusion additive manufacturing (MEAM).
Abstract: This study introduces a new microscale design approach, CONVEX, based on the idea of CONtinuously Varying EXtrusion widths of deposited filaments in material extrusion additive manufacturing (MEAM). The CONVEX design approach breaks free from the traditional 3D printing workflow of filling a CAD-model volume with stacked extruded filaments of constant width and height. Instead, the geometry of each filament is explicitly designed over its entire length. The concept may disrupt a wide range of applications in both the short and long term. In the least ambitious short-term implementation of CONVEX, its principles can be integrated into 3D printing slicing software to allow a geometric form to be fitted by streamlined filaments, with constantly varying widths as required to match the overall geometry (referred to as “streamlined slicing”). The use of continuous streamlined filaments, as opposed to frequently changing the number of filaments, improved the quality of manufactured parts by eradicating voids and defects, which are known to cause critical stress concentrations in specimens for tensile testing. At the other end of the scale, in the most disruptive implementation of the CONVEX design approach, entire new material structures and product types will be enabled, with feature size-scales perhaps an order of magnitude lower than that permitted by present design rules. This will enable new innovative metamaterials and is particularly appropriate for high-value applications such as advanced filtering, tissue engineering, drug delivery, microfluidics or electronics, where the geometries of individual extruded filaments (or deliberate inter-filament pores) form the functional design geometry. To prove the technical feasibility of CONVEX, this study includes rigorous experimental work to characterise how instantaneous changes to MEAM process parameters (e.g. speed, acceleration, extrusion rate and retraction) enable highly controllable and dynamic variation of the width of extruded filaments (from 75 % to 250 % of nozzle diameter). The concept is proven for multiple materials, layer heights, extrusion temperatures, nozzle sizes, and for both Bowden and direct-drive printer types. The Bowden printer was found to be an order of magnitude less responsive to changes in extrusion rate than the direct-drive printer. Case studies demonstrate the CONVEX design approach, which has already enabled break-through micro-mechanical research for MEAM. Industrial implications are discussed along with the potential for translation to other manufacturing processes.

17 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study is performed to characterise the behavior of fabric-reinforced composites used in sports products under large-deflection bending in Izod-type impact tests.

17 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of ultrasonic vibration on nanoscale interfacial structure of thermosonic copper wire bonding on aluminium pads was investigated, and it was found that bonding strength was determined by the extent of fragmentation of a native aluminium oxide overlayer (5-10 nm thick) on aluminum pads, forming paths for formation of intermetallic compound CuAl2 in areas of direct contact of bonded metal surfaces.
Abstract: The effect of ultrasonic vibration on nanoscale interfacial structure of thermosonic copper wire bonding on aluminium pads was investigated. It was found that bonding strength was determined by the extent of fragmentation of a native aluminium oxide overlayer (5–10 nm thick) on aluminium pads, forming paths for formation of intermetallic compound CuAl2 in areas of direct contact of bonded metal surfaces. The degree of fracture of the oxide layer was strongly affected by a level of ultrasonic power.

16 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Book ChapterDOI
01 Jan 1976
TL;DR: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in Solubility with rise in temperature.
Abstract: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in solubility with rise in temperature.

1,573 citations