scispace - formally typeset
Search or ask a question
Author

Vadim V. Silberschmidt

Bio: Vadim V. Silberschmidt is an academic researcher from Loughborough University. The author has contributed to research in topics: Machining & Materials science. The author has an hindex of 44, co-authored 543 publications receiving 8619 citations. Previous affiliations of Vadim V. Silberschmidt include University of Rhode Island & Universities UK.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2011
TL;DR: In this article, it was shown that voids nucleate in Au-Al bonds, while they are absent in Cu-Al bond during thermal annealing, due to the outward diffusion of Al in the area beyond the perimeter of the bonds.
Abstract: Void growth in wire bonds significantly influences the reliability of electronic devices. This paper found that, in the as-bonded state, a few voids nucleate in Au-Al bonds, while they are absent in Cu-Al bonds. Voids grow much faster in Au-Al bonds than in Cu-Al bonds during thermal annealing. It is proposed that void growth in Au-Al bonds due to the oxidation of IMCs and volumetric shrinkage resulted from the growth of Au 8 Al 3 and Au 4 Al, but not due to the Kirkendall effect. Large voids up to 10μm exist after extended annealing, which is also attributed to the outward diffusion of Au to react with Al in the area beyond the perimeter of the bonds. In Cu-Al bonds, the void growth rate is low, and only a few voids of 9 Al 4 . The oxidation of Cu-Al IMCs and outward diffusion of Cu is insignificant; therefore the void growth rate in Cu-Al bonds is low.

5 citations

Journal ArticleDOI
TL;DR: In this paper, the fracture behavior of collagen in-aqua compared with that at ambient (in-air) loading conditions was reported. But significant differences in the mechanical properties were observed for collagen films tested in-qua environment, such as a reduction in their tensile strength, fracture energy and failure strain.
Abstract: Collagen forms one-third of the human-body proteome and finds a wide range of applications in a biomedical field thanks to its mechanical stability, biocompatibility and biodegradability. Collagen can be produced in a form of films suitable for scaffolds, tissue regeneration, flexible electronics etc. significant differences in the mechanical properties were observed for collagen films tested in-aqua environment. Considering this and potential biomedical applications of collagen films, their mechanical testing should be performed in aqua to mimic the in-vivo conditions. Hence, this study reported the fracture behaviour of collagen in-aqua compared with that at ambient (in-air) loading conditions. Single-edged notched tension (SENT) specimens of collagen films demonstrated completely different stress-strain curves in-aqua conditions. A reduction in their tensile strength (by 90%) and fracture energy (by 40%) accompanied with an increase in the failure strain (by 1600%) was observed for such conditions. Crack propagation was rapid for in-air specimens, with a brittle failure, while for in-aqua specimens the crack opening was rather slow and accompanied with by crack blunting, leading to large plastic deformation (ductile failure). These behaviours encouraged the quantification of the fracture toughness of collagen films using different fracture toughness parameters: KIC (linear elastic fracture mechanics) for in-air specimens and JC-integral (elastic-plastic fracture mechanics) for in-aqua specimens.

5 citations

Journal ArticleDOI
TL;DR: In this paper, a calibrated model of enhanced strain-gradient crystal plasticity is proposed, which is shown to characterize adequately deformation behaviour of b.c. single crystals of a β-Ti alloy.
Abstract: A calibrated model of enhanced strain-gradient crystal plasticity is proposed, which is shown to characterize adequately deformation behaviour of b.c.c. single crystals of a β-Ti alloy (Ti-15-3-3-3). In this model, in addition to strain gradients evolving in the course of deformation, incipient strain gradients, related to a component's surface-to-volume ratio, is accounted for. Predictive capabilities of the model in characterizing a size effect in an initial yield and a work-hardening rate in small-scale components is demonstrated. The characteristic length-scale, i.e. the component's dimensions below which the size effect is observed, was found to depend on densities of polar and statistical dislocations and interaction between them.

5 citations

Proceedings ArticleDOI
21 Nov 2008
TL;DR: In this paper, a 99.99% copper wire with diameter 50.4 mum was bonded to a Al-1%Si-0.5%Cu metallisation pad by thermosonic bonding.
Abstract: Thermosonic copper ball bonding is an interconnection technology that serves as a viable and cost-saving alternative to gold ball bonding. However, the reliability of copper bonds remains to be ascertained. Intermetallic compounds (IMCs) and possible voids and cracks may grow and propagate at the interface of bonds during their service. The proper IMCs formation is beneficial to bonding strength but an excessive growth of IMCs, voids and cracks can induce a mechanical failure and increase a contact resistance. In this study, a 99.99% copper wire with diameter 50.4 mum was bonded to a Al-1%Si-0.5%Cu metallisation pad by thermosonic bonding. Scanning electron microscopy, energy dispersive X-ray spectrometry, dual focused ion bean and transmission electron microscopy (TEM) were used to investigate the interfacial evolution of such formed joints during the thermal ageing, and kinetics of Cu-Al IMCs growth was established. The results showed no IMCs at the initial bonded Cu/Al interface. To study the Cu-Al IMCs growth, the samples were thermally aged for different times at a temperature from 200 degC to 300 degC to accelerate interfacial evolution. The growth of Cu-Al IMCs followed the parabolic law as a function of aging time at a certain aging temperature, and it is more sensitive to temperature compared to time. The activation energy of Cu-Al IMC growth was obtained from the Arrhenius plot. Voids and cracks, which are commonly present in gold ball bonds due to thermal aging, were not observed in copper ball bonds even after aging at 200 degC for 2900 hours. Finally, the structure of Cu-Al IMCs was confirmed to be Cu9Al4 by selected area electron diffraction with TEM.

5 citations

Journal ArticleDOI
TL;DR: In this paper, two distinct modelling approaches were introduced to simulate the non-trivial mechanical response of thermally bonded nonwovens based on their planar density. But neither of these approaches is suitable for high-density or low-density fabrics.
Abstract: Nonwoven fabrics are web structures of randomly-oriented fibres, bonded by means of mechanical, thermal or chemical techniques. This paper focuses on nonwovens manufactured with polymer-based fibres and bonded thermally. During thermal bonding of such fibres, as a hot calender with an engraved pattern contacts the fibre web, bond spots are formed by melting of the polymer material. As a result of this bonding process, a pattern of bond points connected with randomly oriented polymer-based fibres form the nonwoven web. Due to their manufacturing-induced composite microstructure and random orientation of fibres, nonwovens demonstrate a complex mechanical behaviour. Two distinct modelling approaches were introduced to simulate the non-trivial mechanical response of thermally bonded nonwovens based on their planar density. The first modelling approach was developed to simulate the mechanical behaviour of high-density nonwovens, and the respective fabric was modelled with shell elements with thicknesses identical to those of the bond points and the fibre matrix having distinct anisotropic mechanical properties. Random orientation of individual fibres was introduced into the model in terms of the orientation distribution function in order to determine the material’s anisotropy. The second modelling approach was introduced to simulate low-density nonwovens, and it treated the nonwoven media as a structure composed of fibres acting as truss links between bond points.

5 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Reference EntryDOI
31 Oct 2001
TL;DR: The American Society for Testing and Materials (ASTM) as mentioned in this paper is an independent organization devoted to the development of standards for testing and materials, and is a member of IEEE 802.11.
Abstract: The American Society for Testing and Materials (ASTM) is an independent organization devoted to the development of standards.

3,792 citations

Book ChapterDOI
01 Jan 1976
TL;DR: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in Solubility with rise in temperature.
Abstract: A positive temperature coefficient is the term which has been used to indicate that an increase in solubility occurs as the temperature is raised, whereas a negative coefficient indicates a decrease in solubility with rise in temperature.

1,573 citations