scispace - formally typeset
Search or ask a question
Author

Vahid Kazemi

Other affiliations: Google
Bio: Vahid Kazemi is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Object detection & Pose. The author has an hindex of 6, co-authored 8 publications receiving 2370 citations. Previous affiliations of Vahid Kazemi include Google.

Papers
More filters
Proceedings ArticleDOI
23 Jun 2014
TL;DR: It is shown how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions.
Abstract: This paper addresses the problem of Face Alignment for a single image. We show how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions. We present a general framework based on gradient boosting for learning an ensemble of regression trees that optimizes the sum of square error loss and naturally handles missing or partially labelled data. We show how using appropriate priors exploiting the structure of image data helps with efficient feature selection. Different regularization strategies and its importance to combat overfitting are also investigated. In addition, we analyse the effect of the quantity of training data on the accuracy of the predictions and explore the effect of data augmentation using synthesized data.

2,545 citations

Posted Content
TL;DR: This model, while being architecturally simple and relatively small in terms of trainable parameters, sets a new state of the art on both unbalanced and balanced VQA benchmark.
Abstract: This paper presents a new baseline for visual question answering task. Given an image and a question in natural language, our model produces accurate answers according to the content of the image. Our model, while being architecturally simple and relatively small in terms of trainable parameters, sets a new state of the art on both unbalanced and balanced VQA benchmark. On VQA 1.0 open ended challenge, our model achieves 64.6% accuracy on the test-standard set without using additional data, an improvement of 0.4% over state of the art, and on newly released VQA 2.0, our model scores 59.7% on validation set outperforming best previously reported results by 0.5%. The results presented in this paper are especially interesting because very similar models have been tried before but significantly lower performance were reported. In light of the new results we hope to see more meaningful research on visual question answering in the future.

168 citations

Proceedings ArticleDOI
01 Jan 2013
TL;DR: This thesis presents practical approaches for tackling the corre-spondence estimation problem with an emphasis on deformable objects and a hybrid generative/discriminative approach is used to perform accurate correspondence estimation in real-time.
Abstract: Many computer vision tasks such as object detection, pose estimation,and alignment are directly related to the estimation of correspondences overinstances of an object class. Other tasks such as image classification andverification if not completely solved can largely benefit from correspondenceestimation. This thesis presents practical approaches for tackling the corre-spondence estimation problem with an emphasis on deformable objects.Different methods presented in this thesis greatly vary in details but theyall use a combination of generative and discriminative modeling to estimatethe correspondences from input images in an efficient manner. While themethods described in this work are generic and can be applied to any object,two classes of objects of high importance namely human body and faces arethe subjects of our experimentations.When dealing with human body, we are mostly interested in estimating asparse set of landmarks – specifically we are interested in locating the bodyjoints. We use pictorial structures to model the articulation of the body partsgeneratively and learn efficient discriminative models to localize the parts inthe image. This is a common approach explored by many previous works. Wefurther extend this hybrid approach by introducing higher order terms to dealwith the double-counting problem and provide an algorithm for solving theresulting non-convex problem efficiently. In another work we explore the areaof multi-view pose estimation where we have multiple calibrated cameras andwe are interested in determining the pose of a person in 3D by aggregating2D information. This is done efficiently by discretizing the 3D search spaceand use the 3D pictorial structures model to perform the inference.In contrast to the human body, faces have a much more rigid structureand it is relatively easy to detect the major parts of the face such as eyes,nose and mouth, but performing dense correspondence estimation on facesunder various poses and lighting conditions is still challenging. In a first workwe deal with this variation by partitioning the face into multiple parts andlearning separate regressors for each part. In another work we take a fullydiscriminative approach and learn a global regressor from image to landmarksbut to deal with insufficiency of training data we augment it by a large numberof synthetic images. While we have shown great performance on the standardface datasets for performing correspondence estimation, in many scenariosthe RGB signal gets distorted as a result of poor lighting conditions andbecomes almost unusable. This problem is addressed in another work wherewe explore use of depth signal for dense correspondence estimation. Hereagain a hybrid generative/discriminative approach is used to perform accuratecorrespondence estimation in real-time.

88 citations

Proceedings ArticleDOI
08 Dec 2014
TL;DR: A real time method for recovering facial shape and expression from a single depth image, using a discriminatively trained prediction pipeline that employs random forests to generate an initial dense but noisy correspondence field and a robust initial fit of the model.
Abstract: This paper contributes a real time method for recovering facial shape and expression from a single depth image. The method also estimates an accurate and dense correspondence field between the input depth image and a generic face model. Both outputs are a result of minimizing the error in reconstructing the depth image, achieved by applying a set of identity and expression blend shapes to the model. Traditionally, such a generative approach has shown to be computationally expensive and non-robust because of the non-linear nature of the reconstruction error. To overcome this problem, we use a discriminatively trained prediction pipeline that employs random forests to generate an initial dense but noisy correspondence field. Our method then exploits a fast ICP-like approximation to update these correspondences, allowing us to quickly obtain a robust initial fit of our model. The model parameters are then fine tuned to minimize the true reconstruction error using a stochastic optimization technique. The correspondence field resulting from our hybrid generative-discriminative pipeline is accurate and useful for a variety of applications such as mesh deformation and retexturing. Our method works in real-time on a single depth image i.e. Without temporal tracking, is free from per-user calibration, and works in low-light conditions.

35 citations

Proceedings ArticleDOI
01 Jan 2011
TL;DR: A new method for face alignment with part-based modeling is proposed that is competitive in terms of precision with existing methods such as Active Appearance Models, but is more robust and more robust than existing methods.
Abstract: We propose a new method for face alignment with part-based modeling. This method is competitive in terms of precision with existing methods such as Active Appearance Models, but is more robust and ...

19 citations


Cited by
More filters
Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, a bottom-up and top-down attention mechanism was proposed to enable attention to be calculated at the level of objects and other salient image regions, which achieved state-of-the-art results on the MSCOCO test server.
Abstract: Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

2,904 citations

Proceedings ArticleDOI
23 Jun 2014
TL;DR: It is shown how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions.
Abstract: This paper addresses the problem of Face Alignment for a single image. We show how an ensemble of regression trees can be used to estimate the face's landmark positions directly from a sparse subset of pixel intensities, achieving super-realtime performance with high quality predictions. We present a general framework based on gradient boosting for learning an ensemble of regression trees that optimizes the sum of square error loss and naturally handles missing or partially labelled data. We show how using appropriate priors exploiting the structure of image data helps with efficient feature selection. Different regularization strategies and its importance to combat overfitting are also investigated. In addition, we analyse the effect of the quantity of training data on the accuracy of the predictions and explore the effect of data augmentation using synthesized data.

2,545 citations

Posted Content
TL;DR: A combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions is proposed, demonstrating the broad applicability of this approach to VQA.
Abstract: Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

2,248 citations

Posted Content
Tero Karras1, Samuli Laine1, Timo Aila1
TL;DR: This article proposed an alternative generator architecture for GANs, borrowing from style transfer literature, which leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images.
Abstract: We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.

1,612 citations