scispace - formally typeset
Search or ask a question
Author

Vaibhav Kumar Gupta

Bio: Vaibhav Kumar Gupta is an academic researcher from Indian Institute of Technology Bombay. The author has contributed to research in topics: Intermolecular force & Wireless network. The author has an hindex of 7, co-authored 29 publications receiving 992 citations. Previous affiliations of Vaibhav Kumar Gupta include National Institute of Technology, Kurukshetra & Colorado State University.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper proposes logic complexity reduction at the transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy, and demonstrates the utility of these approximate adders in two digital signal processing architectures with specific quality constraints.
Abstract: Low power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, human beings can gather useful information from slightly erroneous outputs. Therefore, we do not need to produce exactly correct numerical outputs. Previous research in this context exploits error resiliency primarily through voltage overscaling, utilizing algorithmic and architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction at the transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate this concept by proposing various imprecise or approximate full adder cells with reduced complexity at the transistor level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling. We design architectures for video and image compression algorithms using the proposed approximate arithmetic units and evaluate them to demonstrate the efficacy of our approach. We also derive simple mathematical models for error and power consumption of these approximate adders. Furthermore, we demonstrate the utility of these approximate adders in two digital signal processing architectures (discrete cosine transform and finite impulse response filter) with specific quality constraints. Simulation results indicate up to 69% power savings using the proposed approximate adders, when compared to existing implementations using accurate adders.

637 citations

Proceedings ArticleDOI
01 Aug 2011
TL;DR: This paper proposes logic complexity reduction as an alternative approach to take advantage of the relaxation of numerical accuracy, and demonstrates this concept by proposing various imprecise or approximate Full Adder cells with reduced complexity at the transistor level, and utilizing them to design approximate multi-bit adders.
Abstract: Low-power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, the final output is interpreted by human senses, which are not perfect. This fact obviates the need to produce exactly correct numerical outputs. Previous research in this context exploits error-resiliency primarily through voltage over-scaling, utilizing algorithmic and architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate this concept by proposing various imprecise or approximate Full Adder (FA) cells with reduced complexity at the transistor level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling. We design architectures for video and image compression algorithms using the proposed approximate arithmetic units, and evaluate them to demonstrate the efficacy of our approach. Post-layout simulations indicate power savings of up to 60% and area savings of up to 37% with an insignificant loss in output quality, when compared to existing implementations.

386 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental and theoretical study of the foam formation process is presented, which shows that increase in the mold wall temperature results in an increase in upper skin thickness and a decrease in lower skin thickness.
Abstract: Polyurethane integral skin foams comprise a low density foamed core surrounded by a high density skin of the same material, and are made in a single molding operation. Polyurethane integral skin foams find wide application as structural materials, and the mechanical properties of such foams are significantly affected by the foam structure, which in turn is determined by the foaming process. An experimental and theoretical study of the foam formation process is presented. Experimental results show that increase in the mold wall temperature results in an increase in the upper skin thickness, a decrease in the lower skin thickness, and a decrease in the density of both skins. The core density increases with increasing wall temperature. Increase in the blowing agent concentration produces a small increase in the skin thickness. Computations based on the model of Marciano et al. [Polym. Eng. Sci., 26, 717 (1986)] are presented using an efficient numerical technique. Predictions of the model for the skin thickness, core density and pressure and temperature variation with time are in reasonable agreement with experimental data. The model, however, predicts higher skin densities than the experimental measurements. A modification of the initial condition of the model to account for the air bubbles dispersed during mixing gives better agreement between theory and experiment.

34 citations

Journal ArticleDOI
TL;DR: A 3-D computational model based on the Immersed Boundary Method is developed to simulate adhesion-detachment of two PMN cells in quiescent conditions and predicts that the total number of bonds formed is dictated by the number of available receptors when ligands are in excess, while the excess amount of ligands influences the rate of bond formation.
Abstract: L-selectin-PSGL-1-mediated polymorphonuclear (PMN) leukocyte homotypic interactions potentiate the extent of PMN recruitment to endothelial sites of inflammation. Cell-cell adhesion is a complex phenomenon involving the interplay of bond kinetics and hydrodynamics. As a first step, a 3-D computational model based on the Immersed Boundary Method is developed to simulate adhesion-detachment of two PMN cells in quiescent conditions. Our simulations predict that the total number of bonds formed is dictated by the number of available receptors (PSGL-1) when ligands (L-selectin) are in excess, while the excess amount of ligands influences the rate of bond formation. Increasing equilibrium bond length results in a higher number of receptor-ligand bonds due to an increased intercellular contact area. On-rate constants determine the rate of bond formation, while off-rates control the average number of bonds by modulating bond lifetimes. Application of an external pulling force leads to time-dependent on- and off-rates and causes bond rupture. Moreover, the time required for bond rupture in response to an external force is inversely proportional to the applied load and decreases with increasing off-rate.

17 citations

Proceedings ArticleDOI
01 Mar 2007
TL;DR: This paper characterize the proprietary active scanning algorithms of several wireless network interface cards (WNICs) and driver combinations and believes its experiments are the first of their kind to observe the complete scanning process as the WNICs probe all the channels in the 2.4GHz spectrum.
Abstract: In this paper we characterize the proprietary active scanning algorithms of several wireless network interface cards (WNICs) and driver combinations. We believe our experiments are the first of their kind to observe the complete scanning process as the WNICs probe all the channels in the 2.4GHz spectrum. We discuss the 1) channel probe order; 2) correlation of channel popularity during active scanning and access point (AP) channel deployment popularity; 3) number of probe request frames (PRFs) sent on each channel across WNICs; 4) amount of time spent on each channel across WNICs (dwell time); and 5) variation in scanning algorithms. The knowledge gained from profiling WNICs is of significant importance to numerous disciplines. It enables us to understand different implementations (hardware and software) of active scanning. The same knowledge can help lay a foundation for implementing active scanning in network simulators. It is generically considered in only one of the popular simulators. Finally, the results from our work can also radically influence research in link-layer handovers, effective deployment of access points (APs), securing wireless networks, etc.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, applied probability and queuing in the field of applied probabilistic analysis is discussed. But the authors focus on the application of queueing in the context of road traffic.
Abstract: (1987). Applied Probability and Queues. Journal of the Operational Research Society: Vol. 38, No. 11, pp. 1095-1096.

1,121 citations

Proceedings ArticleDOI
27 May 2013
TL;DR: This paper reviews recent progress in the area, including design of approximate arithmetic blocks, pertinent error and quality measures, and algorithm-level techniques for approximate computing.
Abstract: Approximate computing has recently emerged as a promising approach to energy-efficient design of digital systems. Approximate computing relies on the ability of many systems and applications to tolerate some loss of quality or optimality in the computed result. By relaxing the need for fully precise or completely deterministic operations, approximate computing techniques allow substantially improved energy efficiency. This paper reviews recent progress in the area, including design of approximate arithmetic blocks, pertinent error and quality measures, and algorithm-level techniques for approximate computing.

921 citations

Journal ArticleDOI
TL;DR: A survey of techniques for approximate computing (AC), which discusses strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units, processor components, memory technologies, and so forth, as well as programming frameworks for AC.
Abstract: Approximate computing trades off computation quality with effort expended, and as rising performance demands confront plateauing resource budgets, approximate computing has become not merely attractive, but even imperative. In this article, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU, and FPGA), processor components, memory technologies, and so forth, as well as programming frameworks for AC. We classify these techniques based on several key characteristics to emphasize their similarities and differences. The aim of this article is to provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.

890 citations

Journal ArticleDOI
TL;DR: This paper proposes logic complexity reduction at the transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy, and demonstrates the utility of these approximate adders in two digital signal processing architectures with specific quality constraints.
Abstract: Low power is an imperative requirement for portable multimedia devices employing various signal processing algorithms and architectures. In most multimedia applications, human beings can gather useful information from slightly erroneous outputs. Therefore, we do not need to produce exactly correct numerical outputs. Previous research in this context exploits error resiliency primarily through voltage overscaling, utilizing algorithmic and architectural techniques to mitigate the resulting errors. In this paper, we propose logic complexity reduction at the transistor level as an alternative approach to take advantage of the relaxation of numerical accuracy. We demonstrate this concept by proposing various imprecise or approximate full adder cells with reduced complexity at the transistor level, and utilize them to design approximate multi-bit adders. In addition to the inherent reduction in switched capacitance, our techniques result in significantly shorter critical paths, enabling voltage scaling. We design architectures for video and image compression algorithms using the proposed approximate arithmetic units and evaluate them to demonstrate the efficacy of our approach. We also derive simple mathematical models for error and power consumption of these approximate adders. Furthermore, we demonstrate the utility of these approximate adders in two digital signal processing architectures (discrete cosine transform and finite impulse response filter) with specific quality constraints. Simulation results indicate up to 69% power savings using the proposed approximate adders, when compared to existing implementations using accurate adders.

637 citations

Journal ArticleDOI
TL;DR: The overview of the available methods to study cell adhesion through attachment and detachment events was discussed, which included the cell population and single cell approach.
Abstract: Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

620 citations