scispace - formally typeset
Search or ask a question
Author

Vaidyanathan Vinoth Kumar

Bio: Vaidyanathan Vinoth Kumar is an academic researcher from SRM University. The author has contributed to research in topics: Laccase & Freundlich equation. The author has an hindex of 19, co-authored 46 publications receiving 1093 citations. Previous affiliations of Vaidyanathan Vinoth Kumar include Université de Sherbrooke & Kumaraguru College of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The present findings will advance the understanding of dye decolorization mechanism by CLEA laccase, which could provide useful references for developing industrial wastewater treatment.

128 citations

Journal ArticleDOI
TL;DR: Chitosan coated magnetic nanoparticles (CMNP) have been employed as an effective adsorbent for the removal of copper ions from the wastewater and later which can be easily separated from the aqueous solution via magnetic separation.

101 citations

Journal ArticleDOI
TL;DR: This review addressed the disparity in the molecular features and catalytic mechanism of tyrosinases relevant in environmental applications and a perspective on the future use of laccases and tyros in bioremediation was discussed.
Abstract: Our current global environmental challenges include the reduction of harmful chemicals and their derivatives. Bioremediation has been a key strategy to control the massive presence of chemicals in the environment. Enzymes including the phenoloxidases, laccases and tyrosinases, are increasingly being investigated as “green products” in the removal of many chemical contaminants in waters and soils. Both phenoloxidases are widespread in nature and attractive biocatalysts due to their ability to use readily available molecular oxygen as sole cofactor for their catalytic elimination of a large number of chemicals. Taking advantage of their catalytic potentials, remarkable advances have been made in the engineering of laccases to produce suitable biocatalysts in environmental applications. Studies about novel strategies of laccase immobilization and insolubilization for the treatment of chemical contaminants were provided. Likewise, tyrosinases are gaining increasing interest in environmental applicatio...

89 citations

Journal ArticleDOI
TL;DR: In this paper, a three-phase partitioning technique was applied to co-precipitate laccase and starch, followed by cross-linking with glutaraldehyde and removal of starch by α-amylase to create pores in the CLEAs.

76 citations

Journal ArticleDOI
TL;DR: In this article, the effect of initial solution pH, adsorbent dose, contact time, initial MB dye concentration, and temperature on the removal of MB dye was analyzed, and the adsorption equilibrium data were fitted to different adaption isotherm models such as Langmuir, Freundlich and Dubininin-Radushkevich.
Abstract: Kinetic, mechanism, equilibrium, and thermodynamic behavior of adsorption of methylene blue (MB) dye onto surface modified Strychnos potatorum seeds (SMSP), in an aqueous solution were studied. Batch adsorption experiments were carried out to analyze the effect of initial solution pH, adsorbent dose, contact time, initial MB dye concentration, and temperature on the removal of MB dye. The kinetics of MB dye adsorption onto SMSP follows a pseudo-second order kinetic model. The adsorption of MB dye onto SMSP was found to be controlled by both surface diffusion and pore diffusion. The diffusivity values were calculated from Boyd kinetic and Shrinking Core Model for varying initial MB dye concentration from 50 to 250 mg L−1. The adsorption equilibrium data were fitted to different adsorption isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevich. The equilibrium data fitted best with the Freundlich adsorption isotherm model, which indicates multilayer adsorption of MB dye onto SMSP. The maximum monolayer adsorption capacity estimated with Langmuir isotherm model was 78.84 mg of MB dye molecules per gram of SMSP. Thermodynamic studies showed that the adsorption of MB dye onto SMSP follows an exothermic process. © 2012 American Institute of Chemical Engineers Environ Prog, 32: 624–632, 2013

75 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: An extensive list of various adsorbents such as natural materials, waste materials from industry, agricultural by-products, and biomass based activated carbon in the removal of various dyes has been compiled here.

2,979 citations

Journal ArticleDOI
TL;DR: Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method.
Abstract: In the last few decades, pharmaceuticals, credited with saving millions of lives, have emerged as a new class of environmental contaminant. These compounds can have both chronic and acute harmful effects on natural flora and fauna. The presence of pharmaceutical contaminants in ground waters, surface waters (lakes, rivers, and streams), sea water, wastewater treatment plants (influents and effluents), soils, and sludges has been well doccumented. A range of methods including oxidation, photolysis, UV-degradation, nanofiltration, reverse osmosis, and adsorption has been used for their remediation from aqueous systems. Many methods have been commercially limited by toxic sludge generation, incomplete removal, high capital and operating costs, and the need for skilled operating and maintenance personnel. Adsorption technologies are a low-cost alternative, easily used in developing countries where there is a dearth of advanced technologies, skilled personnel, and available capital, and adsorption appears to be the most broadly feasible pharmaceutical removal method. Adsorption remediation methods are easily integrated with wastewater treatment plants (WWTPs). Herein, we have reviewed the literature (1990-2018) illustrating the rising environmental pharmaceutical contamination concerns as well as remediation efforts emphasizing adsorption.

1,170 citations

Journal ArticleDOI
TL;DR: Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology and its broader application will be further stimulated in the future by the emerging biobased economy.
Abstract: Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled the optimization of existing enzymes and the invention of entirely new biocatalytic reactions that were previously unknown in Nature. It is now eminently feasible to develop enzymatic transformations to fit predefined parameters, resulting in processes that are truly sustainable by design. This approach has successfully been applied, for example, in the industrial synthesis of active pharmaceutical ingredients. In addition to the use of protein engineering, other aspects of biocatalysis engineering, such as substrate, medium, and reactor engineering, can be utilized to improve the efficiency and cost-effectiveness and, hence, the sustainability of biocatalytic reactions. Furthermore, immobilization of an enzyme ...

1,041 citations

Journal ArticleDOI
TL;DR: In this article, a review of different treatment methods for removing heavy metals from the aquatic environment with a different degree of success has been presented, and the distinctive sorts of treatment strategies for the removal of the toxic metals from wastewater had been explained.

742 citations