scispace - formally typeset
Search or ask a question
Author

Valentin Dediu

Bio: Valentin Dediu is an academic researcher from National Research Council. The author has contributed to research in topics: Organic semiconductor & Spintronics. The author has an hindex of 28, co-authored 107 publications receiving 4670 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first experimental evidence of room temperature direct spin polarized injection in sexithienyl (T 6 ), a prototypical organic semiconductor, from colossal magnetoresistance manganite La 0.7 Sr 0.3 MnO 3 (LSMO), was reported.

629 citations

Journal ArticleDOI
TL;DR: In this paper, the metal/organic interface is found to be key for spin injection in organic semiconductors, and the authors investigated how to optimize the injection of spin into these materials.
Abstract: Organic semiconductors are attractive candidates for spintronics applications because of their long spin lifetimes. But few studies have investigated how to optimize the injection of spin into these materials. A new study suggests that the metal/organic interface is key.

551 citations

Journal ArticleDOI
TL;DR: Preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro, and this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.

324 citations

Journal ArticleDOI
TL;DR: In this paper, vertical spin valve devices with a direct interface between the bottom manganite electrode and Alq3, while the top-electrode geometry consists of an insulating tunnel barrier placed between the soft organic semiconductor and the top Co electrode.
Abstract: We report on efficient spin polarized injection and transport in long (102 nm) channels of Alq3 organic semiconductor. We employ vertical spin valve devices with a direct interface between the bottom manganite electrode and Alq3, while the top-electrode geometry consists of an insulating tunnel barrier placed between the “soft” organic semiconductor and the top Co electrode. This solution reduces the ubiquitous problem of the so-called ill-defined layer caused by metal penetration, which extends into the organic layer up to distances of about 50–100 nm and prevents the realization of devices with well-defined geometry. For our devices the thickness is defined with an accuracy of about 2.5 nm, which is near the Alq3 molecular size. We demonstrate efficient spin injection at both interfaces in devices with 100- and 200-nm-thick channels. We solve one of the most controversial problems of organic spintronics: the temperature limitations for spin transport in Alq3-based devices. We clarify this issue by achieving room-temperature spin valve operation through the improvement of spin injection properties of both ferromagnetic/Alq3 interfaces. In addition, we discuss the nature of the inverse sign of the spin valve effect in such devices proposing a mechanism for spin transport.

313 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,†.
Abstract: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,†,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,† †Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Universite ́ Paris-Sud XI, UMR CNRS 8612, Faculte ́ de Pharmacie, IFR 141, 5 rue Jean-Baptiste Cleḿent, F-92296 Chat̂enay-Malabry, France Departamento de Farmacia y Tecnología Farmaceútica, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain ‡Pharmaceutical Sciences Department, Sanofi, 13 Quai Jules Guesdes, F-94403 Vitry-sur-Seine, France

1,705 citations

Journal ArticleDOI
TL;DR: Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible.
Abstract: Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.

1,373 citations

Journal ArticleDOI
26 Feb 2004-Nature
TL;DR: The injection, transport and detection of spin-polarized carriers using an organic semiconductor as the spacer layer in a spin-valve structure is reported, yielding low-temperature giant magnetoresistance effects as large as 40 per cent.
Abstract: A spin valve is a layered structure of magnetic and non-magnetic (spacer) materials whose electrical resistance depends on the spin state of electrons passing through the device and so can be controlled by an external magnetic field. The discoveries of giant magnetoresistance and tunnelling magnetoresistance in metallic spin valves have revolutionized applications such as magnetic recording and memory, and launched the new field of spin electronics--'spintronics'. Intense research efforts are now devoted to extending these spin-dependent effects to semiconductor materials. But while there have been noteworthy advances in spin injection and detection using inorganic semiconductors, spin-valve devices with semiconducting spacers have not yet been demonstrated. pi-conjugated organic semiconductors may offer a promising alternative approach to semiconductor spintronics, by virtue of their relatively strong electron-phonon coupling and large spin coherence. Here we report the injection, transport and detection of spin-polarized carriers using an organic semiconductor as the spacer layer in a spin-valve structure, yielding low-temperature giant magnetoresistance effects as large as 40 per cent.

1,298 citations