scispace - formally typeset
Search or ask a question
Author

Valeria Secchi

Other affiliations: University of Milano-Bicocca
Bio: Valeria Secchi is an academic researcher from Roma Tre University. The author has contributed to research in topics: Biocompatibility & Surface modification. The author has an hindex of 7, co-authored 16 publications receiving 140 citations. Previous affiliations of Valeria Secchi include University of Milano-Bicocca.

Papers
More filters
Journal ArticleDOI
TL;DR: These ecosafe AgNPs demonstrate a great potential in selective detection of environmental Hg2+, which may attract a great interest for several biological research fields.
Abstract: In this work, hydrophilic silver nanoparticles (AgNPs), bifunctionalized with citrate (Cit) and L-cysteine (L-cys), were synthesized. The typical local surface plasmon resonance (LSPR) at λ max = 400 nm together with Dynamic Light Scattering (DLS) measurements ( = 8 ± 1 nm) and TEM studies (O = 5 ± 2 nm) confirmed the system nanodimension and the stability in water. Molecular and electronic structures of AgNPs were investigated by FTIR, SR-XPS, and NEXAFS techniques. We tested the system as plasmonic sensor in water with 16 different metal ions, finding sensitivity to Hg2+ in the range 1-10 ppm. After this first screening, the molecular and electronic structure of the AgNPs-Hg2+ conjugated system was deeply investigated by SR-XPS. Moreover, in view of AgNPs application as sensors in real water systems, environmental safety assessment (ecosafety) was performed by using standardized ecotoxicity bioassay as algal growth inhibition tests (OECD 201, ISO 10253:2006), coupled with determination of Ag+ release from the nanoparticles in fresh and marine aqueous exposure media, by means of ICP-MS. These latest studies confirmed low toxicity and low Ag+ release. Therefore, these ecosafe AgNPs demonstrate a great potential in selective detection of environmental Hg2+, which may attract a great interest for several biological research fields.

50 citations

Journal ArticleDOI
28 Jan 2014-Langmuir
TL;DR: The development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol-ene approach, between alkene-derived monosaccharides and theThiol-functionalized material surface is reported.
Abstract: Despite the relevance of carbohydrates as cues in eliciting specific biological responses, the covalent surface modification of collagen-based matrices with small carbohydrate epitopes has been scarcely investigated. We report thereby the development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol–ene approach, between alkene-derived monosaccharides and the thiol-functionalized material surface. Synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), Fourier transform-infrared (FT-IR), and enzyme-linked lectin assay (ELLA) confirmed the effectiveness of the collagen neoglycosylation. Preliminary biological evaluation in osteoarthritic models is reported. The proposed methodology can be extended to any thiolated surface for the development of smart biomaterials for innovative approaches in regenerative medicine.

39 citations

Journal ArticleDOI
TL;DR: Strongly hydrophilic gold nanoparticles (AuNPs), functionalized with citrate and L-cysteine, were synthetized and used as Resveratrol (RSV) vehicle to improve its bioavailability and confirmed that, at the concentration used, AuNPs do not induce cell death, whereas AuNps@RSV1 maintains the same anticancer effects as the unconjugated RSV.
Abstract: Strongly hydrophilic gold nanoparticles (AuNPs), functionalized with citrate and L-cysteine, were synthetized and used as Resveratrol (RSV) vehicle to improve its bioavailability. Two different conjugation procedures were investigated: the first by adding RSV during AuNPs synthesis (1) and the second by adding RSV after AuNPs synthesis (2). The two different conjugated systems, namely AuNPs@RSV1 and AuNPs@RSV2 respectively, showed good loading efficiency (η%): η1 = 80 ± 5% for AuNPs@RSV1 and η2 = 20 ± 3% for AuNPs@RSV2. Both conjugated systems were investigated by means of Dynamic Light Scattering (DLS), confirming hydrophilic behavior and nanodimension ( 1 = 45 ± 12 nm and 2 = 170 ± 30 nm). Fourier Transform Infrared Spectroscopy (FT-IR), Synchrotron Radiation induced X-Ray Photoelectron Spectroscopy (SR-XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) techniques were applied to deeply understand the hooking mode of RSV on AuNPs surface in the two differently conjugated systems. Moreover, the biocompatibility of AuNPs and AuNPs@RSV1 was evaluated in the concentration range 1.0-45.5 µg/mL by assessing their effect on breast cancer cell vitality. The obtained data confirmed that, at the concentration used, AuNPs do not induce cell death, whereas AuNPs@RSV1 maintains the same anticancer effects as the unconjugated RSV.

25 citations

Journal ArticleDOI
TL;DR: In this article, the biological responses of differently functionalized chitosan analogs were characterized and it was reported that a selected concentration of HVP supported the biomimetic potential better than RGD and preserved the antibacterial properties of chitosa.
Abstract: Hybrid biomaterials allow for the improvement of the biological properties of materials and have been successfully used for implantology in medical applications. The covalent and selective functionalization of materials with bioactive peptides provides favorable results in tissue engineering by supporting cell attachment to the biomaterial through biochemical cues and interaction with membrane receptors. Since the functionalization with bioactive peptides may alter the chemical and physical properties of the biomaterials, in this study we characterized the biological responses of differently functionalized chitosan analogs. Chitosan analogs were produced through the reaction of GRGDSPK (RGD) or FRHRNRKGY (HVP) sequences, both carrying an aldehyde-terminal group, to chitosan. The bio-functionalized polysaccharides, pure or "diluted" with chitosan, were chemically characterized in depth and evaluated for their antimicrobial activities and biocompatibility toward human primary osteoblast cells. The results obtained indicate that the bio-functionalization of chitosan increases human-osteoblast adhesion (p < 0.005) and proliferation (p < 0.005) as compared with chitosan. Overall, the 1:1 mixture of HVP functionalized-chitosan:chitosan is the best compromise between preserving the antibacterial properties of the material and supporting osteoblast differentiation and calcium deposition (p < 0.005 vs. RGD). In conclusion, our results reported that a selected concentration of HVP supported the biomimetic potential of functionalized chitosan better than RGD and preserved the antibacterial properties of chitosan.

23 citations

Journal ArticleDOI
TL;DR: A proof-of-concept study carried out on a self-assembling peptide functionalized with cysteine, as to ideally grant molecule grafting to gold surfaces to open wide perspectives for efficient chemical modification of surfaces with biomolecules to include bioactive motifs and/or to add nanometric fibrous patterns.
Abstract: Achieving rigorous control over the procedures aiming at modifying surfaces by selective and covalent anchoring of bioactive molecules is a mandatory step in view of the realistic applicability of bioengineered materials in the field of tissue engineering, biosensing, and nanomedicine. In this context, we report here a proof-of-concept study carried out on a self-assembling peptide (SAP) functionalized with cysteine (Cys), as to ideally grant molecule grafting to gold surfaces. The effectiveness of the surface functionalization in a monolayer regime and the molecular stability of SAP-Cys were probed by X-ray photoelectron spectroscopy; the highly ordered self-organization attained by the grafting molecules was assessed by means of angular-dependent near edge X-ray absorption spectroscopy studies. This study opens wide perspectives for efficient chemical modification of surfaces with biomolecules to include bioactive motifs and/or to add nanometric fibrous patterns.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review will present the fundamentals of ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlights the syn-thetic strategies involved to create functional 3D ECm mimics.

226 citations

Journal ArticleDOI
TL;DR: In this article, super-hydrophobic fabrics were fabricated by creating roughening structures through alkali etching of fibers, modification with mercapto silanes and hydrophobization via thiol-ene click chemistry.
Abstract: Superhydrophobic fabrics were fabricated by creation of roughening structures through alkali etching of fibers, modification with mercapto silanes and hydrophobization via thiol–ene click chemistry. Alkali etching resulted in nanoscale pits on the fiber surfaces roughening the fabrics with hierarchical structures, and improved the affinity of fibers for mercapto silanes. The click reaction between dodecafluoroheptyl methacrylate and sulfhydryl fibers lowered the surface energy, making the fabrics superhydrophobic with superoleophilicity. The as-obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 4500 abrasion cycles, 200 laundering cycles, as well as long time exposure to UV irradiation. The fabrics could be applied in oil/water separation due to their superhydrophobic and superoleophilic properties.

128 citations

Journal ArticleDOI
01 Mar 2020
TL;DR: In this article, the authors provide an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants, paying attention to the stabilizers and mostly used ligands.
Abstract: This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb the spontaneity of life-related mechanisms, such as the synthesis of cellular constituents and the transport of nutrients into cells, and this causes long / short-term diseases. For this reason, research continuously tends to develop always innovative, selective and efficient processes / technologies to remove pollutants from water. In this paper we will report on the silver nanoparticles synthesis, paying attention to the stabilizers and mostly used ligands, to the characterizations, to the properties and applications as colorimetric sensors for water pollutants. As water pollutants our attention will be focused on several heavy metals ions, such as Hg(II), Ni(II),Cu(II), Fe(III), Mn(II), Cr(III/V) Co(II) Cd(II), Pb(II), due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as pesticides colorimetric sensors in water will be also discussed. All of this with the aim to provide to readers a guide about recent advanced silver nanomaterials, used as colorimetric sensors in water.

101 citations

Journal ArticleDOI
TL;DR: A chondroitin sulfate‐based biomimetic scaffold is proposed that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes.
Abstract: UNLABELLED Costs associated with degenerative inflammatory conditions of articular cartilage are exponentially increasing in the aging population, and evidence shows a strong clinical need for innovative therapies. Stem cell-based therapies represent a promising strategy for the treatment of innumerable diseases. Their regenerative potential is undeniable, and it has been widely exploited in many tissue-engineering approaches, especially for bone and cartilage repair. Their immune-modulatory capacities in particular make stem cell-based therapeutics an attractive option for treating inflammatory diseases. However, because of their great plasticity, mesenchymal stem cells (MSCs) are susceptible to different external factors. Biomaterials capable of concurrently providing physical support to cells while acting as synthetic extracellular matrix have been established as a valuable strategy in cartilage repair. Here we propose a chondroitin sulfate-based biomimetic scaffold that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, either in response to a proinflammatory cytokine or in the presence of stimulated peripheral blood mononuclear cells. In both cases, a significant increase in the production of molecules associated with immunosuppression (nitric oxide and prostaglandins), as well as in the expression of their inducible enzymes (iNos, Pges, Cox-2, and Tgf-β). When implanted subcutaneously in rats, our scaffold revealed a reduced infiltration of leukocytes at 24 hours, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes. In support of its effective use in tissue-engineering applications of cartilage repair, the potential of the proposed platform to drive chondrogenic and osteogenic differentiation of MSC was also proven. SIGNIFICANCE Recently, increasing clinical evidence has highlighted the important role of proinflammatory mediators and infiltrating inflammatory cell populations inducing chronic inflammation and diseases in damaged cartilage. This work should be of broad interest because it proposes an implantable biomimetic material, which holds the promise for a variety of medical conditions that necessitate the functional restoration of damaged cartilage tissue (such as trauma, diseases, deformities, or cancer).

65 citations