scispace - formally typeset
Search or ask a question
Author

Valerie K. Brown

Bio: Valerie K. Brown is an academic researcher from CABI. The author has contributed to research in topics: Ecological succession & Species richness. The author has an hindex of 42, co-authored 75 publications receiving 9032 citations. Previous affiliations of Valerie K. Brown include University of Reading & Imperial College London.


Papers
More filters
Journal ArticleDOI
TL;DR: Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.
Abstract: This review examines the direct effects of climate change on insect herbivores. Temperature is identified as the dominant abiotic factor directly affecting herbivorous insects. There is little evidence of any direct effects of CO2 or UVB. Direct impacts of precipitation have been largely neglected in current research on climate change. Temperature directly affects development, survival, range and abundance. Species with a large geographical range will tend to be less affected. The main effect of temperature in temperate regions is to influence winter survival; at more northerly latitudes, higher temperatures extend the summer season, increasing the available thermal budget for growth and reproduction. Photoperiod is the dominant cue for the seasonal synchrony of temperate insects, but their thermal requirements may differ at different times of year. Interactions between photoperiod and temperature determine phenology; the two factors do not necessarily operate in tandem. Insect herbivores show a number of distinct life-history strategies to exploit plants with different growth forms and strategies, which will be differentially affected by climate warming. There are still many challenges facing biologists in predicting and monitoring the impacts of climate change. Future research needs to consider insect herbivore phenotypic and genotypic flexibility, their responses to global change parameters operating in concert, and awareness that some patterns may only become apparent in the longer term.

2,114 citations

Journal ArticleDOI
TL;DR: There is now a need to improve understanding of how grassland management affects bird population dynamics, and the interaction between predation rates and management-related changes in habitat is particularly important.
Abstract: Summary 1The effects of agricultural intensification on biodiversity in arable systems of western Europe have received a great deal of attention. However, the recent transformation of grassland systems has been just as profound. 2In Britain, the management of grassland has changed substantially in the second half of the 20th century. A high proportion of lowland grassland is managed intensively. The major changes include a doubling in the use of inorganic nitrogen, a switch from hay to silage, and increased stocking densities, particularly of sheep. Structurally diverse and species-rich swards have been largely replaced by relatively dense, fast-growing and structurally uniform swards, dominated by competitive species. 3Most of these changes have reduced the suitability of grassland as feeding and breeding habitat for birds. 4The most important direct effects have been deterioration of the sward as nesting and wintering habitat, and loss of seed resources as food. Short uniform swards afford poor shelter and camouflage from predators, whereas increased mowing intensities and trampling by stock will destroy nests and young. Increased frequency of sward defoliation reduces flowering and seed set, and hence food availability for seed-eating birds. 5The indirect effects of intensification of management on birds relate largely to changes in the abundance and availability of invertebrate prey. The effects of management vary with its type, timing and intensity, and with invertebrate ecology and phenology, but, in general, the abundance and diversity of invertebrates declines with reductions in sward diversity and structural complexity. 6Low input livestock systems are likely to be central to any future management strategies designed to maintain and restore the ecological diversity of semi-natural lowland grasslands. Low additions of organic fertilizer benefit some invertebrate prey species, and moderate levels of grazing encourage sward heterogeneity. 7There is now a need to improve understanding of how grassland management affects bird population dynamics. Particularly important areas of research include: (i) the interaction between changes in food abundance, due to changes in fertilizer inputs, and food accessibility, due to changes in sward structure; (ii) the interaction between predation rates and management-related changes in habitat; and (iii) the impact of alternative anti-helminithic treatments for livestock on invertebrates and birds.

734 citations

Journal ArticleDOI
29 Nov 1985-Science
TL;DR: The discovery of a linked DNA polymorphism is the first step in molecular analysis of the CF gene and its causative role in the disease.
Abstract: A polymorphic DNA marker has been found genetically linked, in a set of 39 human families, to an autosomal recessive gene that causes cystic fibrosis (CF), a disease affecting one in 2000 Caucasian children. The DNA marker (called D0CRI-917) is also linked to the PON locus, which by independent evidence is linked to the CF locus. The best estimates of the genetic distances are 5 centimorgans between the DNA marker and PON and 15 centimorgans between the DNA marker and the CF locus, meaning that the location of the disease gene has been narrowed to about 1 percent of the human genome (about 30 million base pairs). Although the data are consistent with the interpretation that a single locus causes cystic fibrosis, the possibility of genetic heterogeneity remains. The discovery of a linked DNA polymorphism is the first step in molecular analysis of the CF gene and its causative role in the disease.

467 citations

Journal ArticleDOI
TL;DR: It was found that up to a successional age of 16 months, the taxonomic diversities of plants and insects rose; thereafter the diversity of the plant species declined far more than the insect species diversity.
Abstract: The basic features of an intensive study on the various stages of a secondary succession, from fallow Held to birch woodland, are described. The α-β diversities of the green plants, and two orders of insects, Hetcroptera and adult Coleoptera, are described. For the vegetation, in addition to taxonotnic diversity, structural diversity, with both spatial and architectural components, was recognized. It was found that up to a successional age of 16 months, the taxonomic diversities of plants and insects rose; thereafter the diversity of the plant species declined far more than the insect species diversity. It was concluded that in the later successional stages the maintenance of a high level of taxonomic diversity of these orders of insects is correlated with the rising structural diversity of the green plants, which virtually compensates for their falling taxonomic diversity. The larger fungi appear to show a similar trend to the insects.

465 citations

Journal ArticleDOI
04 Aug 2000-Science
TL;DR: Two different UK limestone grasslands were exposed to simulated climate change with the use of nonintrusive techniques to manipulate local climate over 5 years, finding the more fertile, early-successional grassland was much more responsive to climate change.
Abstract: Two different UK limestone grasslands were exposed to simulated climate change with the use of nonintrusive techniques to manipulate local climate over 5 years Resistance to climate change, defined as the ability of a community to maintain its composition and biomass in response to environmental stress, could be explained by reference to the functional composition and successional status of the grasslands The more fertile, early-successional grassland was much more responsive to climate change Resistance could not be explained by the particular climates experienced by the two grasslands Productive, disturbed landscapes created by modern human activity may prove more vulnerable to climate change than older, traditional landscapes

385 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Book
30 Sep 1988
TL;DR: In this paper, the authors define definitions of diversity and apply them to the problem of measuring species diversity, choosing an index and interpreting diversity measures, and applying them to structural and structural diversity.
Abstract: Definitions of diversity. Measuring species diversity. Choosing an index and interpreting diversity measures. Sampling problems. Structural diversity. Applications of diversity measures. Summary.

10,957 citations

Journal ArticleDOI
TL;DR: Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change.
Abstract: Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change Tropical coral reefs and amphibians have been most negatively affected Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming Evolutionary adaptations to warmer conditions have occurred in the interiors of species’ ranges, and resource use and dispersal have evolved rapidly at expanding range margins Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level

7,657 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.

5,811 citations