scispace - formally typeset
Search or ask a question
Author

Valerio Acocella

Other affiliations: University of Siena
Bio: Valerio Acocella is an academic researcher from Roma Tre University. The author has contributed to research in topics: Volcano & Caldera. The author has an hindex of 46, co-authored 177 publications receiving 6148 citations. Previous affiliations of Valerio Acocella include University of Siena.
Topics: Volcano, Caldera, Magma, Dike, Rift


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compare the results of simulated under-pressure and over-pressure experiments to natural calderas and show that all the experimental structures, as well as their progressive development, are commonly observed at natural Calderas, highlighting a consistency between models and nature.

278 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the eruptive history of Etna over the last 100 years and take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system.
Abstract: Most flank eruptions within a central stratovolcano are triggered by lateral draining of magma from its central conduit, and only few eruptions appear to be independent of the central conduit. In order to better highlight the dynamics of flank eruptions in a central stratovolcano, we review the eruptive history of Etna over the last 100 years. In particular, we take into consideration the Mount Etna eruption in 2001, which showed both summit activity and a flank eruption interpreted to be independent from the summit system. The eruption started with the emplacement of a ~N-S trending peripheral dike, responsible for the extrusion of 75% of the total volume of the erupted products. The rest of the magma was extruded through the summit conduit system (SE crater), feeding two radial dikes. The distribution of the seismicity and structures related to the propagation of the peripheral dike and volumetric considerations on the erupted magmas exclude a shallow connection between the summit and the peripheral magmatic systems during the eruption. Even though the summit and the peripheral magmatic systems were independent at shallow depths (<3 km b.s.l.), petro-chemical data suggest that a common magma rising from depth fed the two systems. This deep connection resulted in the extrusion of residual magma from the summit system and of new magma from the peripheral system. Gravitational stresses predominate at the surface, controlling the emplacement of the dikes radiating from the summit; conversely, regional tectonics, possibly related to N-S trending structures, remains the most likely factor to have controlled at depth the rise of magma feeding the peripheral eruption.

184 citations

Journal ArticleDOI
TL;DR: In the case of Mt. Etna, the deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics as discussed by the authors, which were one order of magnitude larger in the western, previously known, portion of the Pernicana Fault System (PFS) with respect to the newly surveyed (~9 km long) eastern section.
Abstract: Flank instability and collapse are observed at many volcanoes. Among these, Mt. Etna is characterized by the spreading of its eastern and southern flanks. The eastern spreading area is bordered to the north by the E–W-trending Pernicana Fault System (PFS). During the 2002–2003 Etna eruption, ground fracturing along the PFS migrated eastward from the NE Rift, to as far as the 18 km distant coastline. The deformation consisted of dextral en-echelon segments, with sinistral and normal kinematics. Both of these components of displacement were one order of magnitude larger (~1 m) in the western, previously known, portion of the PFS with respect to the newly surveyed (~9 km long) eastern section (~0.1 m). This eastern section is located along a pre-existing, but previously unknown, fault, where displaced man-made structures give overall slip rates (1–1.9 cm/year), only slightly lower than those calculated for the western portion (1.4–2.3 cm/year). After an initial rapid motion during the first days of the 2002–2003 eruption, movement of the western portion of the PFS decreased dramatically, while parts of the eastern portion continued to move. These data suggest a model of spreading of the eastern flank of Etna along the PFS, characterized by eruptions along the NE Rift, instantaneous, short-lived, meter-scale displacements along the western PFS and more long-lived centimeter-scale displacements along the eastern PFS. The surface deformation then migrated southwards, reactivating, one after the other, the NNW–SSE-trending Timpe and Trecastagni faults, with displacements of ~0.1 and ~0.04 m, respectively. These structures, along with the PFS, mark the boundaries of two adjacent blocks, moving at different times and rates. The new extent of the PFS and previous activity over its full length indicate that the sliding eastern flank extends well below the Ionian Sea. The clustering of seismic activity above 4 km b.s.l. during the eruption suggests a deep decollement for the moving mass. The collected data thus suggests a significant movement (volume >1,100 km3) of the eastern flank of Etna, both on-shore and off-shore.

165 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of dike patterns and the factors controlling dike propagation within volcanic edifices, including the presence of relief, the shape of the edifice and regional tectonic control.

157 citations

Journal ArticleDOI
TL;DR: It is proposed that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.
Abstract: During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma-hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed.

155 citations


Cited by
More filters
Journal ArticleDOI
24 Apr 2009-Science
TL;DR: What is known and what is needed to develop a holistic understanding of the role of fire in the Earth system are reviewed, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes.
Abstract: Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

2,365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed various contributing processes for the formation of porphyry Cu-(Mo-Au) deposits, from partial melting in the mantle wedge overlying the subducting plate, through processes of magma interaction with the lithosphere, to mechanisms for magma emplacement and volatile exsolution in the upper crust.
Abstract: Porphyry Cu-(Mo-Au) deposits are relatively rare but reproducible products of subduction-related magmatism. No unique processes appear to be required for their formation, although additive combinations of common tectono-magmatic processes, or optimization of these processes, can affect the grade and size as well as the location of the resulting deposits. These various contributing processes are reviewed, from partial melting in the mantle wedge overlying the subducting plate, through processes of magma interaction with the lithosphere, to mechanisms for magma emplacement and volatile exsolution in the upper crust. Specific ore-forming processes, such as magmatic-hydrothermal fluid evolution, are not discussed. Hot, hydrous, relatively oxidized, sulfur-rich mafic magmas (predominantly basalts) generated in the metasomatized mantle wedge above a subducting oceanic slab rise buoyantly to the base of the overlying crust where they stall due to density contrasts. Because these magmas are oxidized, sulfur is dominantly present as sulfate, and chalcophile elements such as Cu and Au are incompatible (i.e., they are retained in the melt). As these magmas begin to crystallize they release heat which causes partial melting of crustal rocks. Mixing between crustal- and mantle-derived magmas yields evolved (andesitic to dacitic), volatile-rich, metalliferous, hybrid magmas, which are of sufficiently low density to rise through the crust. Magma ascent is driven primarily by buoyancy forces and is dominantly a fracture-controlled phenomenon. As such, crustal stress and strain patterns play an important role in guiding the ascent of magma from the lower crust. In particular, translithospheric, orogen-parallel, strike-slip structures serve as a primary control on magma emplacement in many volcanic arcs worldwide. A feedback mechanism operates, whereby preexisting faults facilitate magma ascent, the heat from which further weakens the crust and focuses strain. Certain structural geometries, such as fault jogs, step-overs, and fault intersections, offer low-stress extensional volumes during transpressional strain. Such sites represent vertical conduits of relatively high permeability, up which magmas will preferentially ascend. Large upper crustal plutonic complexes may therefore be localized within these structural settings. Having delivered a sufficient volume of evolved, fertile arc magma to a focused position in the upper crust, magmatic fractionation, recharge, and volatile exsolution lead to the development of ore-forming magmatic-hydrothermal systems. To a first approximation, the size of the resulting deposit will be limited by the magma volume delivered to the upper crustal magma chamber. System-specific details such as magmatic-hydrothermal evolution, the nature of the country rocks, and subsequent erosional and weathering history will ultimately control the value of the deposit, but these factors fall outside the scope of this paper.

741 citations

Journal ArticleDOI
TL;DR: The main Ethiopian rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South as mentioned in this paper.

447 citations

Journal ArticleDOI
TL;DR: In this paper, a review of analytical and numerical models of local stresses around magma chambers, as well as analytical models and numerical examples of dyke-injection and eruption frequencies are presented.

386 citations

Journal ArticleDOI
TL;DR: In this article, the dominant composition of eruptives (basaltic, peralkaline, andesitic-dacitic, rhyolitic) is used to define a caldera.

386 citations