scispace - formally typeset
Search or ask a question
Author

Valeriy E. Karasik

Bio: Valeriy E. Karasik is an academic researcher from Bauman Moscow State Technical University. The author has contributed to research in topics: Laser & Fiber laser. The author has an hindex of 15, co-authored 77 publications receiving 750 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that THz pulsed spectroscopy is potentially an effective tool for non-invasive early diagnosis of dysplastic nevi and melanomas of the skin.
Abstract: In vivo terahertz (THz) spectroscopy of pigmentary skin nevi is performed. The in vivo THz dielectric characteristics of healthy skin and dysplastic and non-dysplastic skin nevi are reconstructed and analyzed. The dielectric permittivity curves of these samples in the THz range exhibit significant differences that could allow non-invasive early diagnosis of dysplastic nevi, which are melanoma precursors. An approach for differentiating dysplastic and non-dysplastic skin nevi using the THz dielectric permittivity is proposed. The results demonstrate that THz pulsed spectroscopy is potentially an effective tool for non-invasive early diagnosis of dysplastic nevi and melanomas of the skin.

109 citations

Journal ArticleDOI
TL;DR: To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements and the observed results justify the high efficiency of the proposed lens design.
Abstract: In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the hollow-core photonic crystal sapphire waveguides that are fabricated using shaped crystal growth technique are developed to operate in a fewmode regime and allow for the broadband transmission of THz pulses with small dispersions and low propagation losses.
Abstract: Over the last decade, THz spectroscopy has been used with success in a variety of fundamental and practical applications,[1,2] which among others include: spectroscopy of condensed matter[3–5] and gases,[6] medical diagnosis[7,8] and therapy,[9] Terahertz (THz) frequency range opens significant opportunities in various fundamental and applied fields including condensed matter physics and chemistry, biology and medicine, public security and nondestructive testing. Despite significant advances in THz instrumentation, the problem of THz sensing in harsh environments, particularly at high temperatures and pressures, remains acute due to the lack of THz materials and optical components capable for operation under the extreme conditions. To address this problem, the THz hollow-core photonic crystal sapphire waveguides that are fabricated using shaped crystal growth technique are developed. Numerical analysis and experimental study show that the proposed waveguides operate in a fewmode regime and allow for the broadband transmission of THz pulses with small dispersions and low propagation losses. Thanks to the unique physical properties of sapphire, the proposed waveguides are capable of operating in a variety of aggressive environments. As an example, the developed waveguides are used to conduct the intra-waveguide interferometric sensing of phase transitions in sodium nitrite films at high temperatures. It is believed that the proposed sapphire-based material’s platform has strong potential for developing THz guided optics for applications in intra-waveguide spectroscopy, interferometry, and remote sensing in aggressive environments. Sapphire Terahertz Waveguides

62 citations

Journal ArticleDOI
TL;DR: In this article, a material parameter reconstruction algorithm for terahertz (THz) pulsed spectroscopy (TPS) was proposed and implemented to study the test sample.
Abstract: New experimental and theoretical results for the material parameter reconstruction using terahertz (THz) pulsed spectroscopy (TPS) are presented. The material parameter reconstruction algorithm was realized and experimentally implemented to study the test sample. In order to both verify the algorithm and to estimate the reconstruction accuracy, test sample material parameters obtained with the TPS were compared with the results of the same sample studying by the use of the backward-wave oscillator (BWO) spectroscopy. Thus, high reconstruction accuracy was demonstrated for the spectral range, corresponding to the BWO sensitivity and located between 0.2 and 1.2 THz. The numerical simulations were applied for determining the material parameter reconstruction stability in the presence of white Gaussian noise in TPS waveforms as well as fluctuations in the femtosecond (FS) optical pulse duration. We report a strong dependence of the inverse problem solution stability on these factors. We found that the instabi...

56 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient terahertz (THz) waveguiding in multichannel sapphire shaped crystals is demonstrated, using edge-defined film-fed growth (EFG) technique (or stepanov technique) of shaped crystal growth has been implemented to manufacture the THz photonic crystalline (PC) waveguide.
Abstract: In this paper, an ability for highly efficient terahertz (THz) waveguiding in multichannel sapphire shaped crystals is demonstrated. The edge-defined film-fed growth (EFG) technique (or Stepanov technique) of shaped crystal growth has been implemented to manufacture the THz photonic crystalline (PC) waveguide. The PC waveguide has been characterized using both numerical simulations and experimental study. It allows guiding the THz waves in multimode regime with the minimal dispersion in frequency range of $1.0$ – $1.55$ THz and the minimal power extinction coefficient of $0.02$ dB $/$ cm at $1.45$ THz. The mode interference phenomenon has been observed in this waveguide highlighting the prospectives of its use for intrawaveguide interferometry. These results demonstrate the capabilities of combining the EFG/Stepanov technique advantages with unique properties of sapphire, such as relatively low THz-wave absorption, high mechanical, thermal, chemical, and radiation strength, for manufacturing the THz waveguides characterized with low loss and dispersion and suitable for use in wide range of THz technology applications in biomedical and material sciences, including sensing in aggressive environment.

49 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, the absorption and emission properties of transition metal (TM)-doped zinc chalcogenides have been investigated to understand their potential application as room-temperature, mid-infrared tunable laser media.
Abstract: The absorption and emission properties of transition metal (TM)-doped zinc chalcogenides have been investigated to understand their potential application as room-temperature, mid-infrared tunable laser media. Crystals of ZnS, ZnSe, and ZnTe, individually doped with Cr/sup 2+/, Co/sup 2+/, Ni/sup 2+/, or Fe/sup 2+/ have been evaluated. The absorption and emission properties are presented and discussed in terms of the energy levels from which they arise. The absorption spectra of the crystals studied exhibit strong bands between 1.4 and 2.0 /spl mu/m which overlap with the output of strained-layer InGaAs diodes. The room-temperature emission spectra reveal wide-band emissions from 2-3 /spl mu/m for Cr and from 2.8-4.0 /spl mu/m for Co, Cr luminesces strongly at room temperature; Co exhibits significant losses from nonradiative decay at temperatures above 200 K, and Ni and Fe only luminesce at low temperatures, Cr/sup 2+/ is estimated to have the highest quantum yield at room temperature among the media investigated with values of /spl sim/75-100%. Laser demonstrations of Cr:ZnS and Cr:ZnSe have been performed in a laser-pumped laser cavity with a Co:MgF/sub 2/ pump laser. The output of both lasers were determined to peak at wavelengths near 2.35 /spl mu/m, and both lasers demonstrated a maximum slope efficiency of approximately 20%. Based on these initial results, the Cr/sup 2+/ ion is predicted to be a highly favorable laser ion for the mid-IR when doped into the zinc chalcogenides; Co/sup 2+/ may also serve usefully, but laser demonstrations yet remain to be performed.

540 citations

01 Jan 2002
TL;DR: In this article, a review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime.
Abstract: A topical review of numerical and experimental studies of supercontinuum generation in photonic crystal fiber is presented over the full range of experimentally reported parameters, from the femtosecond to the continuous-wave regime. Results from numerical simulations are used to discuss the temporal and spectral characteristics of the supercontinuum, and to interpret the physics of the underlying spectral broadening processes. Particular attention is given to the case of supercontinuum generation seeded by femtosecond pulses in the anomalous group velocity dispersion regime of photonic crystal fiber, where the processes of soliton fission, stimulated Raman scattering, and dispersive wave generation are reviewed in detail. The corresponding intensity and phase stability properties of the supercontinuum spectra generated under different conditions are also discussed.

360 citations

Journal ArticleDOI
TL;DR: A detailed overview of the experimentally verified optical solitons in fiber lasers can be found in this article, where an outlook for the development on the soliton in fiber laser is provided and discussed.
Abstract: Solitons are stable localized wave packets that can propagate long distance in dispersive media without changing their shapes. As particle-like nonlinear localized waves, solitons have been investigated in different physical systems. Owing to potential applications in optical communication and optical signal processing systems, optical solitons have attracted intense interest in the past three decades. To experimentally study the formation and dynamics of temporal optical solitons, fiber lasers are considered as a wonderful nonlinear system. During the last decade, several kinds of theoretically predicted solitons were observed experimentally in fiber lasers. In this review, we present a detailed overview of the experimentally verified optical solitons in fiber lasers, including bright solitons, dark solitons, vector solitons, dissipative solitons, dispersion-managed solitons, polarization domain wall solitons, and so on. An outlook for the development on the solitons in fiber lasers is also provided and discussed.

272 citations

Journal ArticleDOI
TL;DR: This review of the recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed.
Abstract: Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties The production of TIs and TMDs by different methods is detailed The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene

264 citations

Journal ArticleDOI
TL;DR: The latest progress in light detection using nanobelts, nanoribbons, nanosheets and the emerging two-dimensional materials is reviewed and potential for the future development of high performance broadband photodetectors is highlighted.
Abstract: Recent research on photodetectors has been mainly focused on nanostructured materials that form the building blocks of device fabrication. The selection of a suitable material with well-defined properties forms the key issue for the fabrication of photodetectors that cover different ranges of the electromagnetic spectrum. In this review, the latest progress in light detection using nanobelts, nanoribbons, nanosheets and the emerging two-dimensional (2D) materials is reviewed. Particular emphasis is placed on the detection of light by the hybrid structures of the mentioned nanostructured materials in order to enhance the efficiency of the light–matter interaction. The booming research area of black phosphorus based photo-detection is also reviewed. This review provides an overview of basic concepts and new directions towards photodetectors, and highlights potential for the future development of high performance broadband photodetectors.

230 citations