scispace - formally typeset
Search or ask a question
Author

Valery M. Dubin

Bio: Valery M. Dubin is an academic researcher from Intel. The author has contributed to research in topics: Layer (electronics) & Copper interconnect. The author has an hindex of 35, co-authored 123 publications receiving 6487 citations. Previous affiliations of Valery M. Dubin include Advanced Micro Devices & Cornell University.


Papers
More filters
Patent
Valery M. Dubin1, Yosi Schacham-Diamand1, Bin Zhao1, Prahalad K. Vasudev1, Chiu H. Ting1 
20 Nov 1996
TL;DR: In this paper, a technique for electrolessly depositing a CoWP barrier material on to copper and electrolessly injecting copper into the barrier material to prevent diffusion when forming layers and/or structures on a semiconductor wafer was proposed.
Abstract: A technique for electrolessly depositing a CoWP barrier material on to copper and electrolessly depositing copper onto a CoWP barrier material to prevent copper diffusion when forming layers and/or structures on a semiconductor wafer.

461 citations

Patent
15 May 1997
TL;DR: In this article, a high conductivity interconnect structure is formed by electroplating or electroless plating of Cu or a Cu-base alloy on a seed layer comprising an alloy of a catalytically active metal such as Cu, and a refractory metal, such as Ta.
Abstract: A high conductivity interconnect structure is formed by electroplating or electroless plating of Cu or a Cu-base alloy on a seed layer comprising an alloy of a catalytically active metal, such as Cu, and a refractory metal, such as Ta. The seed layer also functions as a barrier/adhesion layer for the subsequently plated Cu or Cu-base alloy. Another embodiment comprises initially depositing a refractory metal barrier layer before depositing the seed layer.

454 citations

Patent
Valery M. Dubin1, Yosef Shacham-Diamand1, Chiu H. Ting1, Bin Zhao1, Prahalad K. Vasudev1 
16 Jan 1996
TL;DR: In this article, an electroless deposition technique is used to auto-catalytically deposit copper on the activated barrier layer, and the electroless copper deposition continues until the via/trench is filled.
Abstract: A method of utilizing electroless copper deposition to form interconnects on a semiconductor wafer. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is blanket deposited. Then, a contact displacement technique is used to form a thin activation seed layer of copper on the barrier layer. An electroless deposition technique is then used to auto-catalytically deposit copper on the activated barrier layer. The electroless copper deposition continues until the via/trench is filled. Subsequently, the surface is polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) and the SiN layers.

340 citations

Patent
16 Jan 1996
TL;DR: In this article, an electroless deposition technique is used to auto-catalytically deposit copper on the catalytic surface of a semiconductor, and continues until the via/trench is filled.
Abstract: A method for utilizing electroless copper deposition to form interconnects on a semiconductor. Once a via or a trench is formed in a dielectric layer, a titanium nitride (TiN) or tantalum (Ta) barrier layer is deposited. Then, a catalytic copper seed layer is conformally blanket deposited in vacuum over the barrier layer. Next, without breaking the vacuum, an aluminum protective layer is deposited onto the catalytic layer to encapsulate and protect the catalytic layer from oxidizing. An electroless deposition technique is then used to auto-catalytically deposit copper on the catalytic layer. The electroless deposition solution dissolves the overlying protective layer to expose the surface of the underlying catalytic layer. The electroless copper deposition occurs on this catalytic surface, and continues until the via/trench is filled. Subsequently, the copper and barrier material are polished by an application of chemical-mechanical polishing (CMP) to remove excess copper and barrier material from the surface, so that the only copper and barrier material remaining are in the via/trench openings. Then an overlying silicon nitride (SiN) layer is formed above the exposed copper in order to form a dielectric barrier layer. The copper interconnect is fully encapsulated from the adjacent material by the TiN (or Ta) barrier layer and the overlying SiN layer.

336 citations

Patent
21 Jan 1997
TL;DR: A method for fabricating copper-aluminum metallization utilizing the technique of electroless copper deposition is described in this paper, where the method provides a self-encapsulated, self-healing, and self-tolerant metallisation structure.
Abstract: A method for fabricating copper-aluminum metallization utilizing the technique of electroless copper deposition is described. The method provides a self-encapsulated copper-aluminum metallization structure.

291 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

PatentDOI
16 Jun 2009-Nature
TL;DR: In this paper, a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, is used to provide a semiconductor channel exhibiting improved electronic properties relative to conventional nanotube-based electronic systems.
Abstract: The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

1,081 citations

Journal ArticleDOI
TL;DR: In this article, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field effect transistors.
Abstract: The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (approximately 25) zirconium oxide thin-films (approximately 8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S approximately 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S x m(-1) (12 microS per tube) and 3,000 cm2 x V(-1) x s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S approximately 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.

1,052 citations

01 Jan 1999
TL;DR: Damascene copper electroplating for on-chip interconnections, a process that was conceived and developed in the early 1990s, makes it possible to fill submicron trenches and vias with copper without creating a void or a seam and has thus proven superior to other technologies of copper deposition as discussed by the authors.
Abstract: Damascene copper electroplating for on-chip interconnections, a process that we conceived and developed in the early 1990s, makes it possible to fill submicron trenches and vias with copper without creating a void or a seam and has thus proven superior to other technologies of copper deposition. We discuss here the relationship of additives in the plating bath to superfilling, the phenomenon that results in superconformal coverage, and we present a numerical model which accounts for the experimentally observed profile evolution of the plated metal.

1,006 citations

Journal ArticleDOI
TL;DR: In this article, the authors present recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures, including silicon transistors, carbon nanostructures, and semiconductor nanowires.
Abstract: Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (∼10−8 W) to massive data centers (∼109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces. Open image in new window

994 citations