scispace - formally typeset
Search or ask a question
Author

Vallam Sundar

Other affiliations: Indian Institutes of Technology
Bio: Vallam Sundar is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Wind wave & Shore. The author has an hindex of 24, co-authored 195 publications receiving 1778 citations. Previous affiliations of Vallam Sundar include Indian Institutes of Technology.


Papers
More filters
Proceedings ArticleDOI
01 Jan 2007
TL;DR: In this paper, the authors used an Unstructured Explicit Finite Element Method (UEFEM) to simulate the propagation of the waves due to an artificially imposed initial disturbance.
Abstract: Shallow Water Equations are solved using an Unstructured Explicit Finite Element Method (UEFEM) to simulate long waves in the ocean. The formulation of the UEFEM has been described and found to be computationally efficient for large problems such as basin level modeling of tsunamis. Different domains have been considered to simulate the propagation of the waves due to an artificially imposed initial disturbance. The domain of Bay of Bengal has been considered for simulation with an initial disturbance which resembles the type and location of the 2004 Indian Ocean Tsunami. The Wave elevation and deformations as well as time of travel of tsunami are reproduced. The method hence has high potential of being attractive for application of simulation of global tsunamis.Copyright © 2007 by ASME

3 citations

Journal ArticleDOI
TL;DR: In this article, the modal parameters of a scale-modeled discus-shaped data buoy in heave and pitch are estimated from the experimentally measured impulse response time histories.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the hydrodynamic pressure due to random waves around a pipeline near a rigid bed of slope 1:10 have been measured and the tests were performed for pipelines normal and parallel to the wave direction.
Abstract: The hydrodynamic pressures due to random waves around a pipeline near a rigid bed of slope 1:10 have been measured. The tests were performed for pipelines normal and parallel to the wave direction....

3 citations

Journal ArticleDOI
TL;DR: In this article, a full scale measurement of pressure fields on a vertical wall under wave impacts was carried out and results of investigations carried out to estimate the wave forces on the vertical wall of seawater intake caisson.

3 citations

Journal ArticleDOI
01 Feb 1987-Energy
TL;DR: The method used to estimate wave power potential from recorded time series of water-surface elevation off Madras is described in this paper, where the wave-power potential is estimated using a wave wave model.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new family of generalized distributions for double-bounded random processes with hydrological applications is described, including Kw-normal, Kw-Weibull and Kw-Gamma distributions.
Abstract: Kumaraswamy [Generalized probability density-function for double-bounded random-processes, J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with hydrological applications. For the first time, based on this distribution, we describe a new family of generalized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse Gaussian distributions, among several well-known distributions. Some special distributions in the new family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribution are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with a...

742 citations

01 Jan 2010
TL;DR: A 23-year database of calibrated and validated satellite altimeter measurements is used to investigate global changes in oceanic wind speed and wave height over this period and finds a general global trend of increasing values of windspeed and, to a lesser degree, wave height.
Abstract: Wind speeds over the world’s oceans have increased over the past two decades, as have wave heights. Studies of climate change typically consider measurements or predictions of temperature over extended periods of time. Climate, however, is much more than temperature. Over the oceans, changes in wind speed and the surface gravity waves generated by such winds play an important role. We used a 23-year database of calibrated and validated satellite altimeter measurements to investigate global changes in oceanic wind speed and wave height over this period. We find a general global trend of increasing values of wind speed and, to a lesser degree, wave height, over this period. The rate of increase is greater for extreme events as compared to the mean condition.

737 citations

Book
01 Jan 1985
TL;DR: Theoretical Description of Random Sea Waves Statistical Theory of Irregular Waves Techniques of Random Wave Analysis 2D Computation of Wave Transformation with Random Breaking and Nearshore Currents Statistical Analysis of Extreme Waves Prediction and Control of Beach Deformation Processes.
Abstract: Evolution of Design Method Against Random Waves Statistical Properties and Spectral of Sea Waves Transformation and Deformation of Random Sea Waves Design of Breakwaters Design of Coastal Dikes and Seawalls Probabilistic Design of Harbor Facilities Harbor Tranquility and Vessel Mooring Hydraulic Model Tests with Random Waves Theoretical Description of Random Sea Waves Statistical Theory of Irregular Waves Techniques of Random Wave Analysis 2D Computation of Wave Transformation with Random Breaking and Nearshore Currents Statistical Analysis of Extreme Waves Prediction and Control of Beach Deformation Processes.

436 citations

Book
21 Aug 2006
TL;DR: The mathematical theory and technology needed to understand the multiple scattering phenomenon is known as multiple scattering, and this book is the first devoted to the subject as mentioned in this paper, and the author covers a variety of techniques, describing first the single-obstacle methods and then extending them to the multiple-obsstacle case.
Abstract: The interaction of waves with obstacles is an everyday phenomenon in science and engineering, arising for example in acoustics, electromagnetism, seismology and hydrodynamics. The mathematical theory and technology needed to understand the phenomenon is known as multiple scattering, and this book is the first devoted to the subject. The author covers a variety of techniques, describing first the single-obstacle methods and then extending them to the multiple-obstacle case. A key ingredient in many of these extensions is an appropriate addition theorem: a coherent, thorough exposition of these theorems is given, and computational and numerical issues around them are explored. The application of these methods to different types of problems is also explained; in particular, sound waves, electromagnetic radiation, waves in solids and water waves. A comprehensive bibliography of some 1400 items rounds off the book, which will be an essential reference on the topic for applied mathematicians, physicists and engineers.

355 citations