scispace - formally typeset
Search or ask a question
Author

Valter D. Longo

Bio: Valter D. Longo is an academic researcher from University of Southern California. The author has contributed to research in topics: Cancer & Saccharomyces cerevisiae. The author has an hindex of 67, co-authored 218 publications receiving 22476 citations. Previous affiliations of Valter D. Longo include University of California, Los Angeles & University of Genoa.


Papers
More filters
Journal ArticleDOI
16 Apr 2010-Science
TL;DR: Dietary restriction and reduced activity of nutrient-sensing pathways may slow aging by similar mechanisms, which have been conserved during evolution, and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
Abstract: When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.

2,522 citations

Journal ArticleDOI
08 May 1998-Science
TL;DR: Three biodemographic insights--concerning the correlation of death rates across age, individual differences in survival chances, and induced alterations in age patterns of fertility and mortality--offer clues and suggest research on the failure of complicated systems, on new demographic equations for evolutionary theory, and on fertility-longevity interactions.
Abstract: Old-age survival has increased substantially since 1950 Death rates decelerate with age for insects, worms, and yeast, as well as humans This evidence of extended postreproductive survival is puzzling Three biodemographic insights—concerning the correlation of death rates across age, individual differences in survival chances, and induced alterations in age patterns of fertility and mortality—offer clues and suggest research on the failure of complicated systems, on new demographic equations for evolutionary theory, and on fertility-longevity interactions Nongenetic changes account for increases in human life-spans to date Explication of these causes and the genetic license for extended survival, as well as discovery of genes and other survival attributes affecting longevity, will lead to even longer lives

974 citations

Journal ArticleDOI
TL;DR: In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease, and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma, and rheumatoid arthritis.

926 citations

Journal ArticleDOI
13 Apr 2001-Science
TL;DR: The results indicate that longevity is associated with increased investment in maintenance and show that highly conserved genes play similar roles in life-span regulation in S. cerevisiae and higher eukaryotes.
Abstract: The protein kinase Akt/protein kinase B (PKB) is implicated in insulin signaling in mammals and functions in a pathway that regulates longevity and stress resistance in Caenorhabditis elegans. We screened for long-lived mutants in nondividing yeast Saccharomyces cerevisiae and identified mutations in adenylate cyclase and SCH9, which is homologous to Akt/PKB, that increase resistance to oxidants and extend life-span by up to threefold. Stress-resistance transcription factors Msn2/Msn4 and protein kinase Rim15 were required for this life-span extension. These results indicate that longevity is associated with increased investment in maintenance and show that highly conserved genes play similar roles in life-span regulation in S. cerevisiae and higher eukaryotes.

842 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations

Journal ArticleDOI
TL;DR: Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype.
Abstract: One signal that is overactivated in a wide range of tumour types is the production of a phospholipid, phosphatidylinositol (3,4,5) trisphosphate, by phosphatidylinositol 3-kinase (PI3K) This lipid and the protein kinase that is activated by it — AKT — trigger a cascade of responses, from cell growth and proliferation to survival and motility, that drive tumour progression Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype

5,654 citations

Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations

Journal ArticleDOI
TL;DR: Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt.
Abstract: In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.

3,641 citations