scispace - formally typeset
Search or ask a question
Author

Vanessa Armel

Bio: Vanessa Armel is an academic researcher from University of Montpellier. The author has contributed to research in topics: Ionic liquid & Dye-sensitized solar cell. The author has an hindex of 21, co-authored 30 publications receiving 2696 citations. Previous affiliations of Vanessa Armel include École Normale Supérieure & Australian Research Council.

Papers
More filters
Journal ArticleDOI
TL;DR: Fe-N-C materials quasi-free of crystallographic iron structures after argon or ammonia pyrolysis are synthesized, demonstrating that the turnover frequency of Fe-centred moieties depends on the physico-chemical properties of the support.
Abstract: While platinum has hitherto been the element of choice for catalysing oxygen electroreduction in acidic polymer fuel cells, tremendous progress has been reported for pyrolysed Fe-N-C materials. However, the structure of their active sites has remained elusive, delaying further advance. Here, we synthesized Fe-N-C materials quasi-free of crystallographic iron structures after argon or ammonia pyrolysis. These materials exhibit nearly identical Mossbauer spectra and identical X-ray absorption near-edge spectroscopy (XANES) spectra, revealing the same Fe-centred moieties. However, the much higher activity and basicity of NH3-pyrolysed Fe-N-C materials demonstrates that the turnover frequency of Fe-centred moieties depends on the physico-chemical properties of the support. Following a thorough XANES analysis, the detailed structures of two FeN4 porphyrinic architectures with different O2 adsorption modes were then identified. These porphyrinic moieties are not easily integrated in graphene sheets, in contrast with Fe-centred moieties assumed hitherto for pyrolysed Fe-N-C materials. These new insights open the path to bottom-up synthesis approaches and studies on site-support interactions.

1,561 citations

Journal ArticleDOI
TL;DR: Electrodeposition of poly(3,4-ethylenedioxythiophene) onto conducting plastic allows the cheap and facile synthesis of plastic cathodes for dye-sensitised solar cells, having excellent solar cell efficiency (8%), at a fraction of the cost of platinised plastic.

166 citations

Journal ArticleDOI
TL;DR: It is reported for the first time that the oxygen reduction activity of Fe-N-C catalysts positively correlates with the cavity size and mass-specific pore volume in pristine ZIFs.
Abstract: Active and inexpensive catalysts for oxygen reduction are crucially needed for the widespread development of polymer electrolyte fuel cells and metal–air batteries. While iron–nitrogen–carbon materials pyrolytically prepared from ZIF-8, a specific zeolitic imidazolate framework (ZIF) with sodalite topology, have shown enhanced activities toward oxygen reduction in acidic electrolyte, the rational design of sacrificial metal–organic frameworks toward this application has hitherto remained elusive. Here, we report for the first time that the oxygen reduction activity of Fe–N–C catalysts positively correlates with the cavity size and mass-specific pore volume in pristine ZIFs. The high activity of Fe–N–C materials prepared from ZIF-8 could be rationalized, and another ZIF structure leading to even higher activity was identified. In contrast, the ORR activity is mostly unaffected by the ligand chemistry in pristine ZIFs. These structure–property relationships will help identifying novel sacrificial ZIF or por...

152 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation of catalysts induced by H 2 O 2 was investigated by contacting them ex situ with various amounts of H 2 o 2 and showed that the degradation increased with increasing amounts of HO 2 2.
Abstract: 7 8 Fe-N-C and CoN -C materials are promising catalysts for reducing oxygen in fuel cells. The degradation of such catalysts induced by H 2 O 2 was investigated by contacting them ex situ with various amounts of H 2 O 2. The degradation increased with increasing amounts of H 2 O 2. The effect was most severe for Cr-N-C followed by Fe-N-C and last by CoN -C. Treatment with H 2 O 2 leads to diminished oxygen reduction activity at high potential and/or reduced transport properties at high current density in fuel cell. From spectroscopic characterisation, it was found that 66 and 80% of the CoN x C y and FeN x C y moieties present in pristine catalysts survived the extensive H 2 O 2 treatment, respectively. In parallel, the activity for oxygen reduction was divided by ca 6–10 for Fe-N-C and by ca 3 for CoN -C. The results suggest that the main degradation mechanism in fuel cell for such catalysts is due to a chemical reaction with H 2 O 2 that is generated during operation. The super-proportional decrease of the oxygen reduction activity with loss of FeN x C y and CoN x C y moieties suggests either that only a small fraction of such moieties are initially located on the top surface, or that their turnover frequency for oxygen reduction was drastically reduced due to surface oxidation by H 2 O 2 .

144 citations

Journal ArticleDOI
TL;DR: The previously proposed ratio of total interaction energy to dispersion components and melting points was assessed and was found to correlate with their melting points for the anionic series, producing separate trends for the Cnmim and Cmpyr series of cations.
Abstract: An extensive study of interaction energies in ion pairs of pyrrolidinium and imidazolium ionic liquids is presented. The Cnmpyr and Cnmim cations with varying alkyl chains from Methyl, Ethyl, n-Propyl to n-Butyl were combined with a wide range of routinely used IL anions such as chloride, bromide, mesylate (CH3SO3 or Mes), tosylate (CH3PhSO3 or Tos), bis(trifluoromethanesulfonyl)amide (NTf2), dicyanamide (N(CN)2 or dca), tetrafluoroborate (BF4) and hexafluorophosphate (PF6). A number of energetically favourable conformations were studied for each cation-anion combination. The interaction energy and its dispersion component of the single ion pairs were calculated using a sophisticated state-of-the-art approach: a second-order of Symmetry Adapted Perturbation Theory (SAPT). A comparison of energetics depending on the cation-anion type, as well as the mode of interaction was performed. Dispersion forces were confirmed to be of importance for the overall stabilisation of ionic liquids contributing from 28 kJ mol(-1) in pyrrolidinium ion pairs to 59 kJ mol(-1) in imidazolium ion pairs. The previously proposed ratio of total interaction energy to dispersion components and melting points was assessed for this set of ionic liquids and was found to correlate with their melting points for the anionic series, producing separate trends for the Cnmim and Cmpyr series of cations. Chlorides, bromides and tetrafluoroborates formed close-to-ideal correlations when both types of cations, Cnmim and Cnmpyr, were combined in the same trend. Correlation of the dispersion component of the interaction energy with transport properties such as conductivity and viscosity was also considered. For imidazolium-based ionic liquids strong linear correlations were obtained, whereas pyrrolidinium ionic liquids appeared to be insensitive to this correlation.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
TL;DR: This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts and metal-free catalysts.
Abstract: The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core–shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided.

2,964 citations

Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations

Journal ArticleDOI
11 Jan 2017
TL;DR: In this article, the authors investigate progress towards photo-electrocatalytic water-splitting systems, with special emphasis on how they might be incorporated into photoelectrocaralyst systems.
Abstract: Sunlight is by far the most plentiful renewable energy resource, providing Earth with enough power to meet all of humanity's needs several hundred times over. However, it is both diffuse and intermittent, which presents problems regarding how best to harvest this energy and store it for times when the sun is not shining. Devices that use sunlight to split water into hydrogen and oxygen could be one solution to these problems, because hydrogen is an excellent fuel. However, if such devices are to become widely adopted, they must be cheap to produce and operate. Therefore, the development of electrocatalysts for water splitting that comprise only inexpensive, earth-abundant elements is critical. In this Review, we investigate progress towards such electrocatalysts, with special emphasis on how they might be incorporated into photoelectrocatalytic water-splitting systems and the challenges that remain in developing these devices. Splitting water is an attractive means by which energy — either electrical and/or light — is stored and consumed on demand. Active and efficient catalysts for anodic and cathodic reactions often require precious metals. This Review covers base-metal catalysts that can afford high performance in a more sustainable and available manner.

2,369 citations